Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Overview

Class-Balanced Loss Based on Effective Number of Samples

Tensorflow code for the paper:

Class-Balanced Loss Based on Effective Number of Samples
Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, Serge Belongie

Dependencies:

  • Python (3.6)
  • Tensorflow (1.14)

Datasets:

  • Long-Tailed CIFAR. We provide a download link that includes all the data used in our paper in .tfrecords format. The data was converted and generated by src/generate_cifar_tfrecords.py (original CIFAR) and src/generate_cifar_tfrecords_im.py (long-tailed CIFAR).

Effective Number of Samples:

For a visualization of the data and effective number of samples, please take a look at data.ipynb.

Key Implementation Details:

Training and Evaluation:

We provide 3 .sh scripts for training and evaluation.

  • On original CIFAR dataset:
./cifar_trainval.sh
  • On long-tailed CIFAR dataset (the hyperparameter IM_FACTOR is the inverse of "Imbalance Factor" in the paper):
./cifar_im_trainval.sh
  • On long-tailed CIFAR dataset using the proposed class-balanced loss (set non-zero BETA):
./cifar_im_trainval_cb.sh
  • Run Tensorboard for visualization:
tensorboard --logdir=./results --port=6006
  • The figure below are the results of running ./cifar_im_trainval.sh and ./cifar_im_trainval_cb.sh:

Training with TPU:

We train networks on iNaturalist and ImageNet datasets using Google's Cloud TPU. The code for this section is in tpu/. Our code is based on the official implementation of Training ResNet on Cloud TPU and forked from https://github.com/tensorflow/tpu.

Data Preparation:

  • Download datasets (except images) from this link and unzip it under tpu/. The unzipped directory tpu/raw_data/ contains the training and validation splits. For raw images, please download from the following links and put them into the corresponding folders in tpu/raw_data/:

  • Convert datasets into .tfrecords format and upload to Google Cloud Storage (gcs) using tpu/tools/datasets/dataset_to_gcs.py:

python dataset_to_gcs.py \
  --project=$PROJECT \
  --gcs_output_path=$GCS_DATA_DIR \
  --local_scratch_dir=$LOCAL_TFRECORD_DIR \
  --raw_data_dir=$LOCAL_RAWDATA_DIR

The following 3 .sh scripts in tpu/ can be used to train and evaluate models on iNaturalist and ImageNet using Cloud TPU. For more details on how to use Cloud TPU, please refer to Training ResNet on Cloud TPU.

Note that the image mean and standard deviation and input size need to be updated accordingly.

  • On ImageNet (ILSVRC 2012):
./run_ILSVRC2012.sh
  • On iNaturalist 2017:
./run_inat2017.sh
  • On iNaturalist 2018:
./run_inat2018.sh
  • The pre-trained models, including all logs viewable on tensorboard, can be downloaded from the following links:
Dataset Network Loss Input Size Download Link
ILSVRC 2012 ResNet-50 Class-Balanced Focal Loss 224 link
iNaturalist 2018 ResNet-50 Class-Balanced Focal Loss 224 link

Citation

If you find our work helpful in your research, please cite it as:

@inproceedings{cui2019classbalancedloss,
  title={Class-Balanced Loss Based on Effective Number of Samples},
  author={Cui, Yin and Jia, Menglin and Lin, Tsung-Yi and Song, Yang and Belongie, Serge},
  booktitle={CVPR},
  year={2019}
}
Owner
Yin Cui
Research Scientist at Google
Yin Cui
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
Roger Labbe 13k Dec 29, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022