The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

Overview

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection

Updates | Introduction | Results | Usage | Citation | Acknowledgment

This is the repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection". I3CL with ViTAEv2, ResNet50 and ResNet50 w/ RegionCL backbone are included.


Updates

[2022/04/13] Publish links of training datasets.

[2022/04/11] Add SSL training code for this implementation.

[2022/04/09] The training code for ICDAR2019 ArT dataset is uploaded. Private github repo temporarily.

Other applications of ViTAE Transformer: Image Classification | Object Detection | Sementic Segmentation | Animal Pose Estimation | Matting | Remote Sensing

Introduction

Existing methods for arbitrary-shaped text detection in natural scenes face two critical issues, i.e., 1) fracture detections at the gaps in a text instance; and 2) inaccurate detections of arbitrary-shaped text instances with diverse background context. To address these issues, we propose a novel method named Intra- and Inter-Instance Collaborative Learning (I3CL). Specifically, to address the first issue, we design an effective convolutional module with multiple receptive fields, which is able to collaboratively learn better character and gap feature representations at local and long ranges inside a text instance. To address the second issue, we devise an instance-based transformer module to exploit the dependencies between different text instances and a global context module to exploit the semantic context from the shared background, which are able to collaboratively learn more discriminative text feature representation. In this way, I3CL can effectively exploit the intra- and inter-instance dependencies together in a unified end-to-end trainable framework. Besides, to make full use of the unlabeled data, we design an effective semi-supervised learning method to leverage the pseudo labels via an ensemble strategy. Without bells and whistles, experimental results show that the proposed I3CL sets new state-of-the-art results on three challenging public benchmarks, i.e., an F-measure of 77.5% on ArT, 86.9% on Total-Text, and 86.4% on CTW-1500. Notably, our I3CL with the ResNeSt-101 backbone ranked the 1st place on the ArT leaderboard.

image

Results

Example results from paper.

image

Evaluation results of I3CL with different backbones on ArT. Note that: (1) I3CL with ViTAE only adopts one training stage with LSVT+MLT19+ArT training datasets in this repo. ResNet series adopt three training stages, i.e, pre-train on SynthText, mix-train on ReCTS+RCTW+LSVT+MLT19+ArT and lastly finetune on LSVT+MLT19+ArT. (2) Origin implementation of ResNet series is based on Detectron2. The results and model links of ResNet-50 will be updated soon in this implementation.

Backbone Model Link Training Data Recall Precision F-measure

ViTAEv2-S
[this repo]

OneDrive/
百度网盘 (pw:w754)

LSVT,MLT19,ArT 75.4 82.8 78.9

ResNet-50
[paper]

- SynthText,ReCTS,RCTW,LSVT,MLT19,ArT 71.3 82.7 76.6

ResNet-50 w/ RegionCL(finetuning)
[paper]

- SynthText,ReCTS,RCTW,LSVT,MLT19,ArT 72.6 81.9 77.0

ResNet-50 w/ RegionCL(w/o finetuning)
[paper]

- SynthText,ReCTS,RCTW,LSVT,MLT19,ArT 73.5 81.6 77.3

ResNeXt-101
[paper]

- SynthText,ReCTS,RCTW,LSVT,MLT19,ArT 74.1 85.5 79.4

ResNeSt-101
[paper]

- SynthText,ReCTS,RCTW,LSVT,MLT19,ArT 75.1 86.3 80.3

ResNeXt-151
[paper]

- SynthText,ReCTS,RCTW,LSVT,MLT19,ArT 74.9 86.0 80.1

Usage

Install

Prerequisites:

  • Linux (macOS and Windows are not tested)
  • Python >= 3.6
  • Pytorch >= 1.8.1 (For ViTAE implementation). Please make sure your compilation CUDA version and runtime CUDA version match.
  • GCC >= 5
  • MMCV (We use mmcv-full==1.4.3)
  1. Create a conda virtual environment and activate it. Note that this implementation is based on mmdetection 2.20.0 version.

  2. Install Pytorch and torchvision following official instructions.

  3. Install mmcv-full and timm. Please refer to mmcv to install the proper version. For example:

    pip install mmcv-full==1.4.3 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.9.0/index.html
    pip install timm
    
  4. Clone this repository and then install it:

    git clone https://github.com/ViTAE-Transformer/ViTAE-Transformer-Scene-Text-Detection.git
    cd ViTAE-Transformer-Scene-Text-Detection
    pip install -r requirements/build.txt
    pip install -r requirements/runtime.txt
    pip install -v -e .
    

Preparation

Model:

Data

  • Coco format training datasets are utilized. Some offline augmented ArT training datasets are used. lsvt-test is only used to train SSL(Semi-Supervised Learning) model in paper. Files named train_lossweight.json are the provided pseudo-label for SSL training. You can download correspoding datasets in config file from here and put them in data/:

    Dataset

    Link
    (OneDrive)

    Link
    (Baidu Wangpan百度网盘)

    art Link Link (pw:etif)
    art_light Link Link (pw:mzrk)
    art_noise Link Link (pw:scxi)
    art_sig Link Link (pw:cdk8)
    lsvt Link Link (pw:wly0)
    lsvt_test Link Link (pw:8ha3)
    icdar2019_mlt Link Link (pw:hmnj)
    rctw Link Link (pw:ngge)
    rects Link Link (pw:y00o)

    The file structure should look like:

    |- data
        |- art
        |   |- train_images
        |   |    |- *.jpg
        |   |- test_images
        |   |    |- *.jpg
        |   |- train.json
        |   |- train_lossweight.json
        |- art_light
        |   |- train_images
        |   |    |- *.jpg
        |   |- train.json
        |   |- train_lossweight.json
        ......
        |- lsvt
        |   |- train_images1
        |   |    |- *.jpg
        |   |- train_images2
        |   |    |- *.jpg
        |   |- train1.json
        |   |- train1_lossweight.json
        |   |- train2.json
        |   |- train2_lossweight.json
        |- lsvt_test
        |   |- train_images
        |   |    |- *.jpg
        |   |- train_lossweight.json
        ......
    
    

Training

  • Distributed training with 4GPUs for ViTAE backbone:
python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 tools/train.py \
configs/i3cl_vitae_fpn/i3cl_vitae_fpn_ms_train.py --launcher pytorch --work-dir ./out_dir/${your_dir}
  • Distributed training with 4GPUs for ResNet50 backbone:

stage1:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 tools/train.py \
configs/i3cl_r50_fpn/i3cl_r50_fpn_ms_pretrain.py --launcher pytorch --work-dir ./out_dir/art_r50_pretrain/

stage2:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 tools/train.py \
configs/i3cl_r50_fpn/i3cl_r50_fpn_ms_mixtrain.py --launcher pytorch --work-dir ./out_dir/art_r50_mixtrain/

stage3:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 tools/train.py \
configs/i3cl_r50_fpn/i3cl_r50_fpn_ms_finetune.py --launcher pytorch --work-dir ./out_dir/art_r50_finetune/
  • Distributed training with 4GPUs for ResNet50 w/ RegionCL backbone:

stage1:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 tools/train.py \
configs/i3cl_r50_regioncl_fpn/i3cl_r50_fpn_ms_pretrain.py --launcher pytorch --work-dir ./out_dir/art_r50_regioncl_pretrain/

stage2:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 tools/train.py \
configs/i3cl_r50_regioncl_fpn/i3cl_r50_fpn_ms_mixtrain.py --launcher pytorch --work-dir ./out_dir/art_r50_regioncl_mixtrain/

stage3:

python -m torch.distributed.launch --nproc_per_node=4 --master_port=29500 tools/train.py \
configs/i3cl_r50_regioncl_fpn/i3cl_r50_fpn_ms_finetune.py --launcher pytorch --work-dir ./out_dir/art_r50_regioncl_finetune/

Note:

  • If the GPU memory is limited during training I3CL ViTAE backbone, please adjust img_scale in configuration file. The maximum scale set to (800, 1333) is proper for V100(16G) while there is little effect on the performance actually. Please change the training scale according to your condition.

Inference

For example, use our trained I3CL model to get inference results on ICDAR2019 ArT test set with visualization images, txt format records and the json file for testing submission, please run:

python demo/art_demo.py --checkpoint pretrained_model/I3CL/vitae_epoch_12.pth --score-thr 0.45 --json_file art_submission.json

Note:

  • Upload the saved json file to ICDAR2019-ArT evaluation website for Recall, Precision and F1 evaluation results. Change the path for saving visualizations and txt files if needed.

Citation

This project is for research purpose only.

If you are interested in our work, please consider citing our work. Arxiv

Please post issues to let us know if you encounter any problems.

Acknowledgement

Thanks for mmdetection.

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020

Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil

Xuefeng 5 Jan 15, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022