SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

Overview

SPRING

PWC

PWC

PWC

PWC

This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021.

With SPRING you can perform both state-of-the-art Text-to-AMR parsing and AMR-to-Text generation without many cumbersome external components. If you use the code, please reference this work in your paper:

@inproceedings{bevilacqua-etal-2021-one,
    title = {One {SPRING} to Rule Them Both: {S}ymmetric {AMR} Semantic Parsing and Generation without a Complex Pipeline},
    author = {Bevilacqua, Michele and Blloshmi, Rexhina and Navigli, Roberto},
    booktitle = {Proceedings of AAAI},
    year = {2021}
}

Pretrained Checkpoints

Here we release our best SPRING models which are based on the DFS linearization.

Text-to-AMR Parsing

AMR-to-Text Generation

If you need the checkpoints of other experiments in the paper, please send us an email.

Installation

cd spring
pip install -r requirements.txt
pip install -e .

The code only works with transformers < 3.0 because of a disrupting change in positional embeddings. The code works fine with torch 1.5. We recommend the usage of a new conda env.

Train

Modify config.yaml in configs. Instructions in comments within the file. Also see the appendix.

Text-to-AMR

python bin/train.py --config configs/config.yaml --direction amr

Results in runs/

AMR-to-Text

python bin/train.py --config configs/config.yaml --direction text

Results in runs/

Evaluate

Text-to-AMR

python bin/predict_amrs.py \
    --datasets <AMR-ROOT>/data/amrs/split/test/*.txt \
    --gold-path data/tmp/amr2.0/gold.amr.txt \
    --pred-path data/tmp/amr2.0/pred.amr.txt \
    --checkpoint runs/<checkpoint>.pt \
    --beam-size 5 \
    --batch-size 500 \
    --device cuda \
    --penman-linearization --use-pointer-tokens

gold.amr.txt and pred.amr.txt will contain, respectively, the concatenated gold and the predictions.

To reproduce our paper's results, you will also need need to run the BLINK entity linking system on the prediction file (data/tmp/amr2.0/pred.amr.txt in the previous code snippet). To do so, you will need to install BLINK, and download their models:

git clone https://github.com/facebookresearch/BLINK.git
cd BLINK
pip install -r requirements.txt
sh download_blink_models.sh
cd models
wget http://dl.fbaipublicfiles.com/BLINK//faiss_flat_index.pkl
cd ../..

Then, you will be able to launch the blinkify.py script:

python bin/blinkify.py \
    --datasets data/tmp/amr2.0/pred.amr.txt \
    --out data/tmp/amr2.0/pred.amr.blinkified.txt \
    --device cuda \
    --blink-models-dir BLINK/models

To have comparable Smatch scores you will also need to use the scripts available at https://github.com/mdtux89/amr-evaluation, which provide results that are around ~0.3 Smatch points lower than those returned by bin/predict_amrs.py.

AMR-to-Text

python bin/predict_sentences.py \
    --datasets <AMR-ROOT>/data/amrs/split/test/*.txt \
    --gold-path data/tmp/amr2.0/gold.text.txt \
    --pred-path data/tmp/amr2.0/pred.text.txt \
    --checkpoint runs/<checkpoint>.pt \
    --beam-size 5 \
    --batch-size 500 \
    --device cuda \
    --penman-linearization --use-pointer-tokens

gold.text.txt and pred.text.txt will contain, respectively, the concatenated gold and the predictions. For BLEU, chrF++, and Meteor in order to be comparable you will need to tokenize both gold and predictions using JAMR tokenizer. To compute BLEU and chrF++, please use bin/eval_bleu.py. For METEOR, use https://www.cs.cmu.edu/~alavie/METEOR/ . For BLEURT don't use tokenization and run the eval with https://github.com/google-research/bleurt. Also see the appendix.

Linearizations

The previously shown commands assume the use of the DFS-based linearization. To use BFS or PENMAN decomment the relevant lines in configs/config.yaml (for training). As for the evaluation scripts, substitute the --penman-linearization --use-pointer-tokens line with --use-pointer-tokens for BFS or with --penman-linearization for PENMAN.

License

This project is released under the CC-BY-NC-SA 4.0 license (see LICENSE). If you use SPRING, please put a link to this repo.

Acknowledgements

The authors gratefully acknowledge the support of the ERC Consolidator Grant MOUSSE No. 726487 and the ELEXIS project No. 731015 under the European Union’s Horizon 2020 research and innovation programme.

This work was supported in part by the MIUR under the grant "Dipartimenti di eccellenza 2018-2022" of the Department of Computer Science of the Sapienza University of Rome.

Owner
Sapienza NLP group
The NLP group at the Sapienza University of Rome
Sapienza NLP group
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 08, 2023
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

seominseok 62 Dec 08, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022