Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Overview

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments

[Project website] [Paper]

This project is a PyTorch implementation of Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments, published in CoRL 2020.

Deep reinforcement learning (RL) agents are able to learn contact-rich manipulation tasks by maximizing a reward signal, but require large amounts of experience, especially in environments with many obstacles that complicate exploration. In contrast, motion planners use explicit models of the agent and environment to plan collision-free paths to faraway goals, but suffer from inaccurate models in tasks that require contacts with the environment. To combine the benefits of both approaches, we propose motion planner augmented RL (MoPA-RL) which augments the action space of an RL agent with the long-horizon planning capabilities of motion planners.

Prerequisites

Installation

  1. Install Mujoco 2.0 and add the following environment variables into ~/.bashrc or ~/.zshrc.
# Download mujoco 2.0
$ wget https://www.roboti.us/download/mujoco200_linux.zip -O mujoco.zip
$ unzip mujoco.zip -d ~/.mujoco
$ mv ~/.mujoco/mujoco200_linux ~/.mujoco/mujoco200

# Copy mujoco license key `mjkey.txt` to `~/.mujoco`

# Add mujoco to LD_LIBRARY_PATH
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/.mujoco/mujoco200/bin

# For GPU rendering (replace 418 with your nvidia driver version)
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia-418

# Only for a headless server
$ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libGLEW.so:/usr/lib/nvidia-418/libGL.so
  1. Download this repository and install python dependencies
# Install system packages
sudo apt-get install libgl1-mesa-dev libgl1-mesa-glx libosmesa6-dev patchelf libopenmpi-dev libglew-dev python3-pip python3-numpy python3-scipy

# Download this repository
git clone https://github.com/clvrai/mopa-rl.git

# Install required python packages in your new env
cd mopa-rl
pip install -r requirements.txt
  1. Install ompl
# Linux
sudo apt install libyaml-cpp-dev
sh ./scripts/misc/installEigen.sh #from the home directory # install Eigen

# Mac OS
brew install libyaml yaml-cpp
brew install eigen

# Build ompl
git clone [email protected]:ompl/ompl.git ../ompl
cd ../ompl
cmake .
sudo make install

# if ompl-x.x (x.x is the version) is installed in /usr/local/include, you need to rename it to ompl
mv /usr/local/include/ompl-x.x /usr/local/include/ompl
  1. Build motion planner python wrapper
cd ./mopa-rl/motion_planner
python setup.py build_ext --inplace

Available environments

PusherObstacle-v0 SawyerPushObstacle-v0 SawyerLiftObstacle-v0 SawyerAssemblyObstacle-v0
2D Push Sawyer Push Sawyer Lift Sawyer Assembly

How to run experiments

  1. Launch a virtual display (only for a headless server)
sudo /usr/bin/X :1 &
  1. Train policies
  • 2-D Push
sh ./scripts/2d/baseline.sh  # baseline
sh ./scripts/2d/mopa.sh  # MoPA-SAC
sh ./scripts/2d/mopa_ik.sh  # MoPA-SAC IK
  • Sawyer Push
sh ./scripts/3d/push/baseline.sh  # baseline
sh ./scripts/3d/push/mopa.sh  # MoPA-SAC
sh ./scripts/3d/push/mopa_ik.sh  # MoPA-SAC IK
  • Sawyer Lift
sh ./scripts/3d/lift/baseline.sh  # baseline
sh ./scripts/3d/lift/mopa.sh  # MoPA-SAC
sh ./scripts/3d/lift/mopa_ik.sh  # MoPA-SAC IK
  • Sawyer Assembly
sh ./scripts/3d/assembly/baseline.sh  # baseline
sh ./scripts/3d/assembly/mopa.sh  # MoPA-SAC
sh ./scripts/3d/assembly/mopa_ik.sh  # MoPA-SAC IK

Directories

The structure of the repository:

  • rl: Reinforcement learning code
  • env: Environment code for simulated experiments (2D Push and all Sawyer tasks)
  • config: Configuration files
  • util: Utility code
  • motion_planners: Motion planner code
  • scripts: Scripts for all experiments

Log directories:

  • logs/rl.ENV.DATE.PREFIX.SEED:
    • cmd.sh: A command used for running a job
    • git.txt: Log gitdiff
    • prarms.json: Summary of parameters
    • video: Generated evaulation videos (every evalute_interval)
    • wandb: Training summary of W&B, like tensorboard summary
    • ckpt_*.pt: Stored checkpoints (every ckpt_interval)
    • replay_*.pt: Stored replay buffers (every ckpt_interval)

Trouble shooting

Mujoco GPU rendering

To use GPU rendering for mujoco, you need to add /usr/lib/nvidia-000 (000 should be replaced with your NVIDIA driver version) to LD_LIBRARY_PATH before installing mujoco-py. Then, during mujoco-py compilation, it will show you linuxgpuextension instead of linuxcpuextension. In Ubuntu 18.04, you may encounter an GL-related error while building mujoco-py, open venv/lib/python3.7/site-packages/mujoco_py/gl/eglshim.c and comment line 5 #include <GL/gl.h> and line 7 #include <GL/glext.h>.

Virtual display on headless machines

On servers, you don’t have a monitor. Use this to get a virtual monitor for rendering and put DISPLAY=:1 in front of a command.

# Run the next line for Ubuntu
$ sudo apt-get install xserver-xorg libglu1-mesa-dev freeglut3-dev mesa-common-dev libxmu-dev libxi-dev

# Configure nvidia-x
$ sudo nvidia-xconfig -a --use-display-device=None --virtual=1280x1024

# Launch a virtual display
$ sudo /usr/bin/X :1 &

# Run a command with DISPLAY=:1
DISPLAY=:1 <command>

pybind11-dev not found

wget http://archive.ubuntu.com/ubuntu/pool/universe/p/pybind11/pybind11-dev_2.2.4-2_all.deb
sudo apt install ./pybind11-dev_2.2.4-2_all.deb

References

Citation

If you find this useful, please cite

@inproceedings{yamada2020mopa,
  title={Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments},
  author={Jun Yamada and Youngwoon Lee and Gautam Salhotra and Karl Pertsch and Max Pflueger and Gaurav S. Sukhatme and Joseph J. Lim and Peter Englert},
  booktitle={Conference on Robot Learning},
  year={2020}
}

Authors

Jun Yamada*, Youngwoon Lee*, Gautam Salhotra, Karl Pertsch, Max Pflueger, Gaurav S. Sukhatme, Joseph J. Lim, and Peter Englert at USC CLVR and USC RESL (*Equal contribution)

Owner
Cognitive Learning for Vision and Robotics (CLVR) lab @ USC
Learning and Reasoning for Artificial Intelligence, especially focused on perception and action. Led by Professor Joseph J. Lim @ USC
Cognitive Learning for Vision and Robotics (CLVR) lab @ USC
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Tencent YouTu Research 50 Dec 03, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022