Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

Overview

OpenSelfSup

News

  • Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes).
  • 'GaussianBlur' is replaced from Opencv to PIL, and MoCo v2 training speed doubles!
    (time/iter 0.35s-->0.16s, SimCLR and BYOL are also affected.)
  • OpenSelfSup now supports Mixed Precision Training (apex AMP)!
  • A bug of MoCo v2 has been fixed and now the results are reproducible.
  • OpenSelfSup now supports BYOL!

Introduction

The master branch works with PyTorch 1.1 or higher.

OpenSelfSup is an open source unsupervised representation learning toolbox based on PyTorch.

What does this repo do?

Below is the relations among Unsupervised Learning, Self-Supervised Learning and Representation Learning. This repo focuses on the shadow area, i.e., Unsupervised Representation Learning. Self-Supervised Representation Learning is the major branch of it. Since in many cases we do not distingush between Self-Supervised Representation Learning and Unsupervised Representation Learning strictly, we still name this repo as OpenSelfSup.

Major features

  • All methods in one repository

    For comprehensive comparison in all benchmarks, refer to MODEL_ZOO.md. Most of the selfsup pretraining methods are under the batch_size=256, epochs=200 setting.

    Method VOC07 SVM (best layer) ImageNet (best layer)
    ImageNet 87.17 76.17
    Random 30.54 16.21
    Relative-Loc 64.78 49.31
    Rotation-Pred 67.38 54.99
    DeepCluster 74.26 57.71
    NPID 74.50 56.61
    ODC 78.42 57.70
    MoCo 79.18 60.60
    MoCo v2 84.26 67.69
    SimCLR 78.95 61.57
    BYOL (epoch=300) 86.58 72.35
    • Flexibility & Extensibility

      OpenSelfSup follows a similar code architecture of MMDetection while is even more flexible than MMDetection, since OpenSelfSup integrates various self-supervised tasks including classification, joint clustering and feature learning, contrastive learning, tasks with a memory bank, etc.

      For existing methods in this repo, you only need to modify config files to adjust hyper-parameters. It is also simple to design your own methods, please refer to GETTING_STARTED.md.

    • Efficiency

      All methods support multi-machine multi-gpu distributed training.

    • Standardized Benchmarks

      We standardize the benchmarks including logistic regression, SVM / Low-shot SVM from linearly probed features, semi-supervised classification, and object detection. Below are the setting of these benchmarks.

      Benchmarks Setting Remarks
      ImageNet Linear Classification (Multi) goyal2019scaling Evaluate different layers.
      ImageNet Linear Classification (Last) MoCo Evaluate the last layer after global pooling.
      Places205 Linear Classification goyal2019scaling Evaluate different layers.
      ImageNet Semi-Sup Classification
      PASCAL VOC07 SVM goyal2019scaling Costs="1.0,10.0,100.0" to save evaluation time w/o change of results.
      PASCAL VOC07 Low-shot SVM goyal2019scaling Costs="1.0,10.0,100.0" to save evaluation time w/o change of results.
      PASCAL VOC07+12 Object Detection MoCo
      COCO17 Object Detection MoCo

    Change Log

    Please refer to CHANGELOG.md for details and release history.

    [2020-10-14] OpenSelfSup v0.3.0 is released with some bugs fixed and support of new features.

    [2020-06-26] OpenSelfSup v0.2.0 is released with benchmark results and support of new features.

    [2020-06-16] OpenSelfSup v0.1.0 is released.

    Installation

    Please refer to INSTALL.md for installation and dataset preparation.

    Get Started

    Please see GETTING_STARTED.md for the basic usage of OpenSelfSup.

    Benchmark and Model Zoo

    Please refer to MODEL_ZOO.md for for a comprehensive set of pre-trained models and benchmarks.

    License

    This project is released under the Apache 2.0 license.

    Acknowledgement

    • This repo borrows the architecture design and part of the code from MMDetection.
    • The implementation of MoCo and the detection benchmark borrow the code from moco.
    • The SVM benchmark borrows the code from fair_self_supervision_benchmark.
    • openselfsup/third_party/clustering.py is borrowed from deepcluster.

    Contributors

    We encourage researchers interested in Self-Supervised Learning to contribute to OpenSelfSup. Your contributions, including implementing or transferring new methods to OpenSelfSup, performing experiments, reproducing of results, parameter studies, etc, will be recorded in MODEL_ZOO.md. For now, the contributors include: Xiaohang Zhan (@XiaohangZhan), Jiahao Xie (@Jiahao000), Enze Xie (@xieenze), Xiangxiang Chu (@cxxgtxy), Zijian He (@scnuhealthy).

    Contact

    This repo is currently maintained by Xiaohang Zhan (@XiaohangZhan), Jiahao Xie (@Jiahao000) and Enze Xie (@xieenze).

Comments
  • [Feature] Can we load ImageNet data using LMDB?

    [Feature] Can we load ImageNet data using LMDB?

    Describe the feature

    Current ImageNet data loader can only support pillow, cv2 backends to load images. By some reasone, I need to use LMDB to load dataset which is supported by mmcls. https://github.com/Westlake-AI/openmixup/blob/8966870a05b85ea940a02c4646693ec101ab0575/openmixup/datasets/data_sources/image_list.py#L49-L51

    enhancement 
    opened by wang-tf 4
  • Question about the invTrans in the visualization code for automix

    Question about the invTrans in the visualization code for automix

    Hi, thank you for your great work. I found that the invTrans in the visualization code for automix use cifar dataset's mean & std by default. Will it work when i input the imagenet images?

    https://github.com/Westlake-AI/openmixup/blob/90dab92464e94ac5c4139c37f07ed21df9c2affb/openmixup/models/classifiers/automix_V1plus.py#L353

    help wanted 
    opened by mrbulb 4
  • How to convert model output to torchscript file?

    How to convert model output to torchscript file?

    Checklist

    • I have searched related issues but cannot get the expected help.
    • I have read related documents and don't know what to do.

    Describe the question you meet

    I already using config modified from MogaNet to train the perfect model, but I need to convert it to torchscript. How to convert the .pth to torchscript(.pt), I try the general method but get error, because the .pth file only contains the weight, and not contains the model.

    如何能转换模型文件到 TorchScript 格式? 我已经使用修改的 MogaNet 配置文件训练出了一个良好的模型,但是我需要转换 .pth 文件到 .pt 文件,即 TorchScript 格式。 如何转换模型输出文件 .pth 到 TorchScript?我尝试了一些通用方法,但是不能成功,因为 .pth 文件仅仅包含权重,并不包含模型网络。

    help wanted 
    opened by nikbobo 3
  • Where will I get the pretrained code for moganet?

    Where will I get the pretrained code for moganet?

    Checklist

    • I have searched related issues but cannot get the expected help.
    • I have read related documents and don't know what to do.

    Describe the question you meet

    [here]

    Post related information

    1. The output of pip list | grep "mmcv\|mmcls\|^torch" [here]
    2. Your config file if you modified it or created a new one.
    [here]
    
    1. Your train log file if you meet the problem during training. [here]
    2. Other code you modified in the mmcls folder. [here]
    help wanted 
    opened by M-SunRise 3
  • there is a problem when i run :python setup.py develop

    there is a problem when i run :python setup.py develop

    when i run:python setup.py develop,there is a problem,i paste it down here

    running develop
    C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\easy_install.py:144: EasyInstallDeprecationWarning: easy_install command is deprecated. Use build and pip and other standards
    -based tools.
      warnings.warn(
    C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\install.py:34: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tool
    s.
      warnings.warn(
    running egg_info
    writing openmixup.egg-info\PKG-INFO
    writing dependency_links to openmixup.egg-info\dependency_links.txt
    writing requirements to openmixup.egg-info\requires.txt
    writing top-level names to openmixup.egg-info\top_level.txt
    reading manifest file 'openmixup.egg-info\SOURCES.txt'
    adding license file 'LICENSE'
    writing manifest file 'openmixup.egg-info\SOURCES.txt'
    running build_ext
    Creating c:\users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\openmixup.egg-link (link to .)
    openmixup 0.2.5+90dab92 is already the active version in easy-install.pth
    
    Installed d:\python_projects\openmixup
    Processing dependencies for openmixup==0.2.5+90dab92
    Searching for faiss-gpu==1.6.1
    Reading https://pypi.org/simple/faiss-gpu/
    C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\pkg_resources\__init__.py:123: PkgResourcesDeprecationWarning: gpu-1.5.3 is an invalid version and will not be supported in a future release
      warnings.warn(
    C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\pkg_resources\__init__.py:123: PkgResourcesDeprecationWarning:  is an invalid version and will not be supported in a future release
      warnings.warn(
    C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\pkg_resources\__init__.py:123: PkgResourcesDeprecationWarning: gpu-1.6.0 is an invalid version and will not be supported in a future release
      warnings.warn(
    C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\pkg_resources\__init__.py:123: PkgResourcesDeprecationWarning: gpu-1.6.1 is an invalid version and will not be supported in a future release
      warnings.warn(
    C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\pkg_resources\__init__.py:123: PkgResourcesDeprecationWarning: gpu-1.6.3 is an invalid version and will not be supported in a future release
      warnings.warn(
    C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\pkg_resources\__init__.py:123: PkgResourcesDeprecationWarning: gpu-1.6.4 is an invalid version and will not be supported in a future release
      warnings.warn(
    C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\pkg_resources\__init__.py:123: PkgResourcesDeprecationWarning: gpu-1.6.4.post2 is an invalid version and will not be supported in a future relea
    se
      warnings.warn(
    C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\pkg_resources\__init__.py:123: PkgResourcesDeprecationWarning: gpu-1.6.5 is an invalid version and will not be supported in a future release
      warnings.warn(
    C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\pkg_resources\__init__.py:123: PkgResourcesDeprecationWarning: gpu-1.7.0 is an invalid version and will not be supported in a future release
      warnings.warn(
    C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\pkg_resources\__init__.py:123: PkgResourcesDeprecationWarning: gpu-1.7.1 is an invalid version and will not be supported in a future release
      warnings.warn(
    C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\pkg_resources\__init__.py:123: PkgResourcesDeprecationWarning: gpu-1.7.1.post1 is an invalid version and will not be supported in a future relea
    se
      warnings.warn(
    C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\pkg_resources\__init__.py:123: PkgResourcesDeprecationWarning: gpu-1.7.1.post2 is an invalid version and will not be supported in a future relea
    se
      warnings.warn(
    Downloading https://files.pythonhosted.org/packages/1d/d4/290ed049631dc061843920cd6e2b5d9af25cb5c98cb7ecbe2b7ca4bebf12/faiss-gpu-1.6.1.tar.gz#sha256=7a280e951d305d654a116b9f31275169f30841c8b851f0d689421ef8a
    3ecf7b8
    Best match: faiss-gpu 1.6.1
    Processing faiss-gpu-1.6.1.tar.gz
    Writing C:\Users\SHAOSH~1\AppData\Local\Temp\easy_install-3zs3m1q3\faiss-gpu-1.6.1\setup.cfg
    Running faiss-gpu-1.6.1\setup.py -q bdist_egg --dist-dir C:\Users\SHAOSH~1\AppData\Local\Temp\easy_install-3zs3m1q3\faiss-gpu-1.6.1\egg-dist-tmp-snlcnz4n
    C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\install.py:34: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tool
    s.
      warnings.warn(
    Traceback (most recent call last):
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\sandbox.py", line 156, in save_modules
        yield saved
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\sandbox.py", line 198, in setup_context
        yield
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\sandbox.py", line 259, in run_setup
        _execfile(setup_script, ns)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\sandbox.py", line 46, in _execfile
        exec(code, globals, locals)
      File "C:\Users\SHAOSH~1\AppData\Local\Temp\easy_install-3zs3m1q3\faiss-gpu-1.6.1\setup.py", line 91, in <module>
    
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\__init__.py", line 87, in setup
        return distutils.core.setup(**attrs)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\core.py", line 185, in setup
        return run_commands(dist)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\core.py", line 201, in run_commands
        dist.run_commands()
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\dist.py", line 973, in run_commands
        self.run_command(cmd)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\dist.py", line 1217, in run_command
        super().run_command(command)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\dist.py", line 992, in run_command
        cmd_obj.run()
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\bdist_egg.py", line 165, in run
        cmd = self.call_command('install_lib', warn_dir=0)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\bdist_egg.py", line 151, in call_command
        self.run_command(cmdname)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\cmd.py", line 319, in run_command
        self.distribution.run_command(command)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\dist.py", line 1217, in run_command
        super().run_command(command)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\dist.py", line 992, in run_command
        cmd_obj.run()
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\install_lib.py", line 11, in run
        self.build()
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\command\install_lib.py", line 112, in build
        self.run_command('build_ext')
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\cmd.py", line 319, in run_command
        self.distribution.run_command(command)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\dist.py", line 1217, in run_command
        super().run_command(command)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\dist.py", line 992, in run_command
        cmd_obj.run()
      File "C:\Users\SHAOSH~1\AppData\Local\Temp\easy_install-3zs3m1q3\faiss-gpu-1.6.1\setup.py", line 45, in run
        sha = out.strip().decode('ascii')
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 346, in run
        self.build_extensions()
      File "C:\Users\SHAOSH~1\AppData\Local\Temp\easy_install-3zs3m1q3\faiss-gpu-1.6.1\setup.py", line 50, in build_extensions
    
      File "C:\Users\SHAOSH~1\AppData\Local\Temp\easy_install-3zs3m1q3\faiss-gpu-1.6.1\setup.py", line 58, in _remove_flag
        sha = __version__.split('+')[-1]
    AttributeError: 'MSVCCompiler' object has no attribute 'compiler'
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
      File "setup.py", line 168, in <module>
        setup(
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\__init__.py", line 87, in setup
        return distutils.core.setup(**attrs)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\core.py", line 185, in setup
        return run_commands(dist)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\core.py", line 201, in run_commands
        dist.run_commands()
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\dist.py", line 973, in run_commands
        self.run_command(cmd)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\dist.py", line 1217, in run_command
        super().run_command(command)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\dist.py", line 992, in run_command
        cmd_obj.run()
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\develop.py", line 34, in run
        self.install_for_development()
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\develop.py", line 129, in install_for_development
        self.process_distribution(None, self.dist, not self.no_deps)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\easy_install.py", line 754, in process_distribution
        distros = WorkingSet([]).resolve(
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\pkg_resources\__init__.py", line 789, in resolve
        dist = best[req.key] = env.best_match(
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\pkg_resources\__init__.py", line 1075, in best_match
        return self.obtain(req, installer)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\pkg_resources\__init__.py", line 1087, in obtain
        return installer(requirement)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\easy_install.py", line 681, in easy_install
        return self.install_item(spec, dist.location, tmpdir, deps)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\easy_install.py", line 707, in install_item
        dists = self.install_eggs(spec, download, tmpdir)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\easy_install.py", line 900, in install_eggs
        return self.build_and_install(setup_script, setup_base)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\easy_install.py", line 1174, in build_and_install
        self.run_setup(setup_script, setup_base, args)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\easy_install.py", line 1158, in run_setup
        run_setup(setup_script, args)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\sandbox.py", line 262, in run_setup
        raise
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\contextlib.py", line 131, in __exit__
        self.gen.throw(type, value, traceback)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\sandbox.py", line 198, in setup_context
        yield
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\contextlib.py", line 131, in __exit__
        self.gen.throw(type, value, traceback)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\sandbox.py", line 169, in save_modules
        saved_exc.resume()
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\sandbox.py", line 143, in resume
        raise exc.with_traceback(self._tb)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\sandbox.py", line 156, in save_modules
        yield saved
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\sandbox.py", line 198, in setup_context
        yield
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\sandbox.py", line 259, in run_setup
        _execfile(setup_script, ns)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\sandbox.py", line 46, in _execfile
        exec(code, globals, locals)
      File "C:\Users\SHAOSH~1\AppData\Local\Temp\easy_install-3zs3m1q3\faiss-gpu-1.6.1\setup.py", line 91, in <module>
    
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\__init__.py", line 87, in setup
        return distutils.core.setup(**attrs)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\core.py", line 185, in setup
        return run_commands(dist)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\core.py", line 201, in run_commands
        dist.run_commands()
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\dist.py", line 973, in run_commands
        self.run_command(cmd)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\dist.py", line 1217, in run_command
        super().run_command(command)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\dist.py", line 992, in run_command
        cmd_obj.run()
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\bdist_egg.py", line 165, in run
        cmd = self.call_command('install_lib', warn_dir=0)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\bdist_egg.py", line 151, in call_command
        self.run_command(cmdname)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\cmd.py", line 319, in run_command
        self.distribution.run_command(command)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\dist.py", line 1217, in run_command
        super().run_command(command)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\dist.py", line 992, in run_command
        cmd_obj.run()
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\command\install_lib.py", line 11, in run
        self.build()
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\command\install_lib.py", line 112, in build
        self.run_command('build_ext')
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\cmd.py", line 319, in run_command
        self.distribution.run_command(command)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\dist.py", line 1217, in run_command
        super().run_command(command)
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\dist.py", line 992, in run_command
        cmd_obj.run()
      File "C:\Users\SHAOSH~1\AppData\Local\Temp\easy_install-3zs3m1q3\faiss-gpu-1.6.1\setup.py", line 45, in run
        sha = out.strip().decode('ascii')
      File "C:\Users\shaoshuai\anaconda3\envs\openmixup\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 346, in run
        self.build_extensions()
      File "C:\Users\SHAOSH~1\AppData\Local\Temp\easy_install-3zs3m1q3\faiss-gpu-1.6.1\setup.py", line 50, in build_extensions
    
      File "C:\Users\SHAOSH~1\AppData\Local\Temp\easy_install-3zs3m1q3\faiss-gpu-1.6.1\setup.py", line 58, in _remove_flag
        sha = __version__.split('+')[-1]
    AttributeError: 'MSVCCompiler' object has no attribute 'compiler'
    

    It looks like can't install faiss.I try to install faiss through pip command,but don't work. Please help me.

    help wanted 
    opened by 774911840 3
  • Where can we find the Resnet fine-tuning config file for A2MIM?

    Where can we find the Resnet fine-tuning config file for A2MIM?

    Checklist

    • I have searched related issues but cannot get the expected help.
    • I have read related documents and don't know what to do.

    Describe the question you meet

    In this page, I can not find the Fine-tuning Config for ResNet-50. There is a likely config(configs/benchmarks/classification/imagenet/r50_rsb_a2_ft_sz224_8xb256_cos_fp16_ep100.py) in the directory. Is it the right cofnig file?

    help wanted 
    opened by wang-tf 2
  • Update New Features and Update Documents in V0.2.6

    Update New Features and Update Documents in V0.2.6

    Updating features:

    1. Support new self-supervised method BEiT with ViT-Base on ImageNet-1K, and fix bugs of CAE, MaskFeat, and SimMIM in Dataset, Model, and Head. Note that we added HOG feature implementation borrowed from the original repo for MaskFeat.
    2. Support new backbone architecture DeiT-3 and provide configs.
    3. Update pre-training and fine-tuning config files, and documents for the relevant masked image modeling (MIM) methods (BEiT, MaskFeat, CAE, and A2MIM).
    4. Support Grad-CAM visualization tools vis_cam.py of supported architectures.

    Updating documents:

    1. Update the template and add the latest paper lists of mixup and MIM methods in Awesome Mixups and Awesome MIM.
    2. Update documents of tools.
    bug documentation enhancement 
    opened by Lupin1998 2
  • SAMix Configs for TinyImageNet

    SAMix Configs for TinyImageNet

    Hey, would it be possible to get SAMix Resnet 18 config files for TinyImageNet? I'm trying to adapt the CIFAR-100 config to Tiny but I'm running into shape mismatch issues. Thank you.

    update 
    opened by aswathn1 2
  • No module named 'openmixup'

    No module named 'openmixup'

    Hi authors, Thanks for your great work. When I run the script following your GETTING_STARTED.md, it returns me "no module named ''openmixup". When I tried to import openmixup in python directly, it tells me "no module named 'openmixup.version'". It seems that the version.py file in in the .gitignore list. Is this the reason for the error?

    bug 
    opened by xiangyu8 2
  • Refactoring and Support New Methods and Documents (V0.2.7)

    Refactoring and Support New Methods and Documents (V0.2.7)

    Code refactoring:

    1. Refactor openmixup.core (instead of openmixup.hooks) and openmixup.models.augments (contains mixup augmentation methods which are originally implemented in openmixup.models.utils). After code refactoring, the macro design of OpenMixup is similar to most projects of MMLab.
    2. Support deployment of ONNX and TorchScript in openmixup.core.export and tools/deployment. We refactored the abstract class BaseModel (implemented in openmixup/models/classifiers/base_model.py) to support forward_inference (for custom inference and visualization). We also refactored openmixup.models.heads and openmixup.models.losses to support forward_inference. You can deploy the classification models in OpenMixup according to deployment tutorials.
    3. Support testing API methods in openmixup/apis/test.py for evaluation and deployment of classification models.
    4. Refactor openmixup.core.optimizers to separate optimizers and builders and support the latest Adan optimizer.

    Supporting new features:

    1. Support detailed usage instructions in README of config files for image classification methods in configs/classification, e.g., mixups on ImageNet. We will update READMEs of other methods in configs/selfsup and configs/semisup in a few weeks.
    2. Refine the origianzation of README files according to README-Template.
    3. Support the new mixup augmentation method (AlignMix) and provide the relevant config files in various datasets.

    Updating documents:

    1. Update documents of mixup benchmarks on ImageNet in Model_Zoo_sup.md. Update config files for supported mixup methods.
    2. Update formats (figures, introductions and content tables) of awesome lists in Awesome Mixups and Awesome MIM and provide the latest methods.
    enhancement update Refactoring 
    opened by Lupin1998 1
  • Release Models of MogaNet and Update Features in V0.2.6

    Release Models of MogaNet and Update Features in V0.2.6

    Updateing new features:

    1. Fix the classification heads and update implementations and config files of AlexNet and InceptionV3.

    Uploading Benchmark Results (release):

    1. Updating mixup benchmarks on ImageNet as provided in AutoMix and update results in Model_Zoo_sup.md.
    2. Release pre-trained models and logs of MogaNet.

    Updating documents:

    1. Update documents of mixup benchmarks on ImageNet with new backbones in Model_Zoo_sup.md.
    2. Update awesome lists in Awesome Mixups and Awesome MIM and provide teaser figures of most papers as illustrations.
    documentation enhancement update 
    opened by Lupin1998 1
  • [Feature] Migration to OpenMMLab 2.0 framework.

    [Feature] Migration to OpenMMLab 2.0 framework.

    Describe the feature

    Hi, OpenMixup Team.

    We have release the OpenMMLab 2.0 framework, and release the new version of MMClassification and MMSelfSup.

    We also introduce the new features in these two blogs.

    • https://zhuanlan.zhihu.com/p/574842341
    • https://zhuanlan.zhihu.com/p/573317958

    If you think the new features are useful to your project, feel free to try or migrate to OpenMMLab 2.0 framework.

    MMClassification/MMSelfSup Team.

    enhancement 
    opened by tonysy 1
  • AutoMix tutorial that is independent of MMClassification

    AutoMix tutorial that is independent of MMClassification

    Dear Authors,

    Inspiring work! Could you please provide a simplified demo/tutorial of how to use AutoMix in general PyTorch training? I have no experience of using OpenMMLab-style framework. A small demo like google colab notebook would be of great help!

    Thanks!

    help wanted 
    opened by lofrienger 1
Releases(moganet-in1k-weights)
Owner
AI Lab, Westlake University
AI Lab, Westlake University
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
Diffgram - Supervised Learning Data Platform

Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning

Diffgram 1.6k Jan 07, 2023
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

OFA Sys 1.4k Jan 08, 2023
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
ECAENet (TensorFlow and Keras)

ECAENet: EfficientNet with Efficient Channel Attention for Plant Species Recognition (SCI:Q3) (Journal of Intelligent & Fuzzy Systems)

4 Dec 22, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022