Learning trajectory representations using self-supervision and programmatic supervision.

Overview

Trajectory Embedding for Behavior Analysis (TREBA)

Implementation from the paper:

Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Yue, Pietro Perona. Task Programming: Learning Data Efficient Behavior Representations. In Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Our learned trajectory embeddings can be applied to a variety of behavior analysis tasks. Here we show instructions on training TREBA, and applying it to behavior classification.

Results on Fly Dataset

On the data split of the Fly v. Fly dataset provided in the Quick Start instructions below.

Input Features MAP @ 10% Data MAP @ 50% Data MAP @ 100% Data
Pose 0.348 0.519 0.586
Pose + TREBA (TVAE only) 0.419 0.635 0.722
Pose + TREBA (w/ Task Programming) 0.650 0.707 0.750
Domain-specific features 0.774 0.829 0.868
Domain-specific features + TREBA (TVAE only) 0.791 0.852 0.880
Domain-specific features + TREBA (w/ Task Programming) 0.820 0.868 0.886

Note that (TVAE only) corresponds to using trajectory generation losses from a Trajectory-VAE setup only, and (w/ Task Programming) corresponds to the decoder setup with programmed tasks using contrastive and consistency losses described in our paper.

Results on Mouse Dataset

Coming soon!

Since the data used in the mouse experiments in our paper is from an internal dataset, we will update the task programming results here from the released CalMS21 dataset. Link to download the dataset: https://data.caltech.edu/records/1991.

Quick Start

Follow these instructions if you would like to quickly try out training TREBA and using TREBA features in downstream behavior classification. Please see these additional instructions on setting up a new dataset and for setting up new configurations

Development Environment

Make sure you have the following dependencies installed before proceeding:

  • Python 3+ distribution
  • Training TREBA:
    • PyTorch >= 0.4.0
  • Downstream classification:
    • Tensorflow >= 2.0.0 (GPU not necessary, can install easily with pip install tensorflow or conda install tensorflow)

Dataset

The original Fly vs. Fly dataset is available to download here (Fly vs. Fly dataset paper). We provide the processed Fly vs. Fly dataset with the dataset split used our paper at the following link: https://drive.google.com/drive/folders/1Lxhexdb_XuwryLSb9JZqJThJAF6IKHs_?usp=sharing.

There are three folders:

  • data_for_classification contains the keypoints and hand-designed features for the fly dataset in train,val,test splits. This is only needed to train the downstream behavior classifiers.
  • fly_pre_trained_features contains the TREBA features extracted for fly classification trained with task programming and 13 programs. This is TREBA features extracted from a trained model that is ready for use.
  • data_for_training_treba_and_feature_extraction contains the fly dataset without labels for training the TREBA model, as well as the data in the form to use for feature extraction. This is the data needed to train the TREBA model.

Running TREBA

There are two ways to run our model:

  1. Training from scratch: Use the data in data_for_training_treba_and_feature_extraction to train TREBA (around 2 days on one GPU) and extract features (< 1 hour). Use the extracted features to train classifier models (< 1 hour for 1 training amount and 1 repeat, around 1 day on GPU for all training amounts (8 total) and repeats (9 total))
  2. Using pretrained features: This step starts from already extracted TREBA features. Here, we use the data in fly_pre_trained_features to train classifier models (< 1 hour for 1 training amount and 1 repeat, around 1 day on GPU for all training amounts (8 total) and repeats (9 total))

Instructions for Training TREBA

You may skip this section if you start from the already extracted embeddings in fly_pre_trained_features.

If you wish to train the model from scratch instead of using the extracted embeddings, use the following instructions:

  1. Download data from the "data_for_training_treba_and_feature_extraction" folder at the following link into util/datasets/fly_v1/data. https://drive.google.com/drive/folders/1Lxhexdb_XuwryLSb9JZqJThJAF6IKHs_?usp=sharing

  2. To run on GPU with device 0:

python run_single.py \
-d 0 \
--config_dir fly_treba_original \
--feature_extraction fly_train_encoding,fly_val_encoding,fly_test_encoding \
--feature_names fly_train,fly_val,fly_test

If you are running on CPU, remove -d 0 from the command.

This run will take around ~1 day on GPU.

The trained models and extracted features will be saved to saved/fly_treba_original/run_1

Instructions for Downstream Tasks (Behavior Classification)

If you wish to start from the pre-trained features, download data from the "fly_pre_trained_features" folder at the following link into saved/fly_treba_original/run_1/. https://drive.google.com/drive/folders/1Lxhexdb_XuwryLSb9JZqJThJAF6IKHs_?usp=sharing

If you already followed the previous step, the extracted features from the previous step is already saved in saved/fly_treba_original/run_1/

  1. Download data from 'data_for_classification' in the following link into util/datasets/fly_v1/data. This contains the Fly v. Fly data with behavior annotations. https://drive.google.com/drive/folders/1Lxhexdb_XuwryLSb9JZqJThJAF6IKHs_?usp=sharing

  2. From inside downstream_tasks/fly_classification, run:

python fly_classification_script.py \
--encodings fly_treba_original \
--input_type features \
--log_name fly_classification_log.txt \
--model_name fly_classification_model

(The input_type can be features for hand-designed features, or pose for detected fly poses/keypoints.)

This run will take ~1 day because by default, the code does 9 repeats of classifier training for 8 training data amounts. You can modify the first two lines for train_amount_list,repeats in fly_classifier_script to reduce the number of runs.

The final log will be saved in downstream_tasks/fly_classification.

Acknowledgments

We would like to thank the following Github repos for sharing their code, which helped development of TREBA:

Style-Consistency Repo

Supervised Contrastive Loss Repo

Neuroethology Repos

License

Please refer to our paper for details and consider citing it if you find the code useful:

@article{sun2020task,
  title={Task Programming: Learning Data Efficient Behavior Representations},
  author={Sun, Jennifer J and Kennedy, Ann and Zhan, Eric and Anderson, David J and Yue, Yisong and Perona, Pietro},
  journal={arXiv preprint arXiv:2011.13917},
  year={2020}
}

TREBA is available under the CC BY-NC-SA 4.0 license.

Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Jan 03, 2023
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022