CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Overview

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现


目录

  1. 性能情况 Performance
  2. 所需环境 Environment
  3. 注意事项 Attention
  4. 文件下载 Download
  5. 预测步骤 How2predict
  6. 训练步骤 How2train
  7. 参考资料 Reference

性能情况

训练数据集 权值文件名称 测试数据集 输入图片大小 mAP 0.5:0.95 mAP 0.5
VOC07+12 centernet_resnet50_voc.pth VOC-Test07 512x512 - 77.1
COCO-Train2017 centernet_hourglass_coco.pth COCO-Val2017 512x512 38.4 56.8

所需环境

torch==1.2.0

注意事项

代码中的centernet_resnet50_voc.pth是使用voc数据集训练的。
代码中的centernet_hourglass_coco.pth是使用coco数据集训练的。
注意不要使用中文标签,文件夹中不要有空格!
在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件

文件下载

训练所需的centernet_resnet50_voc.pth、centernet_hourglass_coco.pth可在百度网盘中下载。
链接: https://pan.baidu.com/s/1QBBgRb_TH8kJdSCQGgcXmQ 提取码: phnc

centernet_resnet50_voc.pth是voc数据集的权重。
centernet_hourglass_coco.pth是coco数据集的权重。

预测步骤

a、使用预训练权重

  1. 下载完库后解压,在百度网盘下载centernet_resnet50_voc.pth或者centernet_hourglass_coco.pth,放入model_data,运行predict.py,输入
img/street.jpg
  1. 利用video.py可进行摄像头检测。

b、使用自己训练的权重

  1. 按照训练步骤训练。
  2. 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类
_defaults = {
    "model_path"        : 'model_data/centernet_resnet50_voc.pth',
    "classes_path"      : 'model_data/voc_classes.txt',
    # "model_path"        : 'model_data/centernet_hourglass_coco.h5',
    # "classes_path"      : 'model_data/coco_classes.txt',
    "backbone"          : "resnet50",
    "image_size"        : [512,512,3],
    "confidence"        : 0.3,
    # backbone为resnet50时建议设置为True
    # backbone为hourglass时建议设置为False
    # 也可以根据检测效果自行选择
    "nms"               : True,
    "nms_threhold"      : 0.3,
    "cuda"              : True
}
  1. 运行predict.py,输入
img/street.jpg
  1. 利用video.py可进行摄像头检测。

训练步骤

  1. 本文使用VOC格式进行训练。
  2. 训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
  3. 训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
  4. 在训练前利用voc2centernet.py文件生成对应的txt。
  5. 再运行根目录下的voc_annotation.py,运行前需要将classes改成你自己的classes。注意不要使用中文标签,文件夹中不要有空格!
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
  1. 此时会生成对应的2007_train.txt,每一行对应其图片位置及其真实框的位置
  2. 在训练前需要务必在model_data下新建一个txt文档,文档中输入需要分的类,在train.py中将classes_path指向该文件,示例如下:
classes_path = 'model_data/new_classes.txt'    

model_data/new_classes.txt文件内容为:

cat
dog
...
  1. 运行train.py即可开始训练。

mAP目标检测精度计算更新

更新了get_gt_txt.py、get_dr_txt.py和get_map.py文件。
get_map文件克隆自https://github.com/Cartucho/mAP
具体mAP计算过程可参考:https://www.bilibili.com/video/BV1zE411u7Vw

Reference

https://github.com/xuannianz/keras-CenterNet
https://github.com/see--/keras-centernet
https://github.com/xingyizhou/CenterNet

Comments
  • map指标

    map指标

    B导,我在使用get_map.py的时候,您的初始设置confidence为0.02,我正常得到map结果,但是我像其他网络一样把confidence修改成为0.001以后就得不到map结果了,这是为什么呢? 还有就是想问一下,在计算voc的map时,confidence都应该设置为很低,所以是不是0.02和0.001的效果相似?谢谢b导

    opened by ChristmasLee 2
  • 训练没有归一化,预测却有归一化,是不是有问题?

    训练没有归一化,预测却有归一化,是不是有问题?

    训练时候加载数据是dataloader.py 222行,是没有对图片做mean和std归一化的,但预测时predict.py -> centernet.py -> util/util.py -> preprocess_input里却对图片做了mean、std归一化,这应该有问题吧?

    opened by seven-linglx 2
  • 显示no mudule named 'past'

    显示no mudule named 'past'

    Traceback (most recent call last): File "train.py", line 15, in from utils.callbacks import LossHistory File "/root/centernet/centernet-pytorch-main/utils/callbacks.py", line 9, in from torch.utils.tensorboard import SummaryWriter File "/root/.local/lib/python3.7/site-packages/torch/utils/tensorboard/init.py", line 6, in from .writer import FileWriter, SummaryWriter # noqa F401 File "/root/.local/lib/python3.7/site-packages/torch/utils/tensorboard/writer.py", line 18, in from ._convert_np import make_np File "/root/.local/lib/python3.7/site-packages/torch/utils/tensorboard/_convert_np.py", line 12, in from caffe2.python import workspace File "/root/.local/lib/python3.7/site-packages/caffe2/python/workspace.py", line 15, in from past.builtins import basestring

    opened by buloseshi 1
  • 请问我改mobilenetv3的时候运行到第7批次就自动停止了是怎么回事呢

    请问我改mobilenetv3的时候运行到第7批次就自动停止了是怎么回事呢

    Finish Validation 0%| | 0/119 [00:00<?, ?it/s]Get map. 0%| | 0/119 [00:00<?, ?it/s] Traceback (most recent call last): File "/home/linux/data2/sun/centernet-pytorch-main/train.py", line 491, in epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, backbone, save_period, save_dir, local_rank) File "/home/linux/data2/sun/centernet-pytorch-main/utils/utils_fit.py", line 161, in fit_one_epoch eval_callback.on_epoch_end(epoch + 1, model_train) File "/home/linux/data2/sun/centernet-pytorch-main/utils/callbacks.py", line 211, in on_epoch_end self.get_map_txt(image_id, image, self.class_names, self.map_out_path) File "/home/linux/data2/sun/centernet-pytorch-main/utils/callbacks.py", line 145, in get_map_txt outputs = decode_bbox(outputs[0], outputs[1], outputs[2], self.confidence, self.cuda) IndexError: list index out of range

    opened by sunsn1997 2
  • 第一次尝试的新手提问

    第一次尝试的新手提问

    image

    按照readme文档中的步骤 1 已解压VOC数据集至项目根目录,pth文件至model_data目录 2 已修改voc_annotation.py 中的annotation_mode为2 3 运行train.py

    环境 pytorch1.2 + cuda10.0 +python3.6 ,Ubuntu 刚开始是使用的高版本torch和python,然后也尝试了python3.6+ torch1.2的环境,出现一样的问题

    opened by Xie-Muxi 1
Releases(v3.0)
  • v3.0(Apr 22, 2022)

    重要更新

    • 支持step、cos学习率下降法。
    • 支持adam、sgd优化器选择。
    • 支持学习率根据batch_size自适应调整。
    • 支持不同预测模式的选择,单张图片预测、文件夹预测、视频预测、图片裁剪、heatmap、各个种类目标数量计算。
    • 更新summary.py文件,用于观看网络结构。
    • 增加了多GPU训练。
    Source code(tar.gz)
    Source code(zip)
  • v2.0(Mar 4, 2022)

    重要更新

    • 更新train.py文件,增加了大量的注释,增加多个可调整参数。
    • 更新predict.py文件,增加了大量的注释,增加fps、视频预测、批量预测等功能。
    • 更新centernet.py文件,增加了大量的注释,增加先验框选择、置信度、非极大抑制等参数。
    • 合并get_dr_txt.py、get_gt_txt.py和get_map.py文件,通过一个文件来实现数据集的评估。
    • 更新voc_annotation.py文件,增加多个可调整参数。
    • 更新summary.py文件,用于观看网络结构。
    Source code(tar.gz)
    Source code(zip)
Owner
Bubbliiiing
Bubbliiiing
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
A python module for configuration of block devices

Blivet is a python module for system storage configuration. CI status Licence See COPYING Installation From Fedora repositories Blivet is available in

78 Dec 14, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Code for the paper "On the Power of Edge Independent Graph Models"

Edge Independent Graph Models Code for the paper: "On the Power of Edge Independent Graph Models" Sudhanshu Chanpuriya, Cameron Musco, Konstantinos So

Konstantinos Sotiropoulos 0 Oct 26, 2021
Code for MarioNette: Self-Supervised Sprite Learning, in NeurIPS 2021

MarioNette | Webpage | Paper | Video MarioNette: Self-Supervised Sprite Learning Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Ale

Dima Smirnov 28 Nov 18, 2022
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
Tgbox-bench - Simple TGBOX upload speed benchmark

TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build

Non 1 Jan 09, 2022
Automatically align face images 🙃→🙂. Can also do windowing and warping.

Automatic Face Alignment (AFA) Carl M. Gaspar & Oliver G.B. Garrod You have lots of photos of faces like this: But you want to line up all of the face

Carl Michael Gaspar 15 Dec 12, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022