Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Related tags

Deep LearningGCS_KI
Overview

Graph Convolution Simulator (GCS)

Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Requirements:

PyTorch and DGL should be installed based on your system. For other libraries, you can install them using the following command:

$ pip install -r requirements.txt

Run Knowledge Integration Interpretation (KI) by GCS on example data:

$ bash run_example.sh

Interpretation results are saved in ./example/example_data/gcs.edgelist.

If the knowledge graph is small, users can visualize it by ./example/example_data/results.pdf. Here is the results for the example data: image

Run Knowledge Intergration Interpretation by GCS for your own model

Step 1: Prepare the entity embedding of vanilla LM and knowledge-enhanced LM:

Store them as PyTorch tensor (.pt) format. Make sure they have the same number of rows, and the indexes of entities are the same. The default files are emb_roberta.pt and emb_kadapter.pt.

Step 2: Prepare the knowledge graph:

Three files are needed to load the knowledge graph:

  • a) qid2idx.json: The index dictionary. The key is entity Q-label, and value is the index of entity in entity embedding
  • b) qid2label.json : The label dictionary. The key is entity Q-label, and the value is the entity label text. Note that this dictionary is only for visualization, you can set it as {Q-label: Q-label} if you don't have the text.
  • c) kg.edgelist: The knowledge triple to construct knowledge graph. Each row is for one triple as: entity1_idx \t entity2_idx \t {}.

Step 3: Run GCS for KI interpretation:

After two preparation steps, you can run GCS by:

$ python src/example.py  --emb_vlm emb_roberta.pt  -emb_klm emb_kadapter.pt  --data_dir ./example_data  --lr 1e-3  --loss mi_loss

As for the hyperparameters, users may check them in ./example/src/example.py. Note that for large knowledge graphs, we recommend to use mutual information loss (mi_loss), and please do not visualize the results for large knowledge graphs.

Step 4: Analyze GCS interpretation results:

The interpretation results are saved in ./example/example_data/gcs.edgelist. Each row is for one triple as: entity1_idx \t entity2_idx \t {'a': xxxx}. Here, the value of 'a' is the attention coefficient value on the triple/entity (entity1, r, entity2). Users may use them to analyze the factual knowledge learned during knowledge integration.

Reproduce the results in the paper

Please enter ./all_exp folder for more details

Cite

If you use the code, please cite the paper:

@article{hou2022understanding,
  title={Understanding Knowledge Integration in Language Models with Graph Convolutions},
  author={Hou, Yifan and Fu, Guoji and Sachan, Mrinmaya},
  journal={arXiv preprint arXiv:2202.00964},
  year={2022}
}

Contact

Feel free to open an issue or send me ([email protected]) an email if you have any questions!

Owner
yifan
yifan
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.

lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo

Lacmus Foundation 168 Dec 27, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022