Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Overview

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning

Sriram Ravula, Georgios Smyrnis

This is the code for our project "Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning". We make use of contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations.

Requirements

In order to run the code for our models, it is necessary to install pytorch_lightning and all of its dependencies. Moreover, it is necessary that the following files from the OpenAI CLIP repository (https://github.com/openai/CLIP) are added, along with their respective requirements:

Structure

The following source files are required to execute the various experiments mentioned in our report:

  • baselines.py: Code which performs training and evaluation of the baseline end-to-end supervised model.
  • noisy_clip_dataparallel.py: Performs training and evaluation of the student model, based on the CLIP architecture.
  • zeroshot_validation.py: Performs evaluation of the zero-shot model.
  • linear_probe.py: Performs training and evaluation of a linear probe on top of the learned representations.
  • noise_level_testing.py: Evaluation of a trained model on various noise levels added in the input.
  • utils.py: General library for functions used throughout our code.

We also provide slice_imagenet100.py, a code to be used one time to generate the ImageNet-100 subset we used, as defined by imagenet100.txt. In order to run most of the code we provide, please first run this file with the proper source path to the full ImageNet dataset (can be downloaded separately at https://image-net.org/download) and desired destination path for the 100-class subset. Then, provide the path to your 100-class ImageNet subset in the yaml config files. For further details, refer to the comments in slice_imagenet100.py and the global variables set at the beginning of the script.

In the config/ folder, some sample configuration files for our experiments are included.

Examples

Using the following snippets of code, the experiments described in the report can be run. Note that editing the batch_size and gpus parameters of the sample files will lead to speedup and increased performance for the contrastive models.

  • Short_Evaluation_Demo.ipynb: A small demo of the types of distortions we use, as well as a comparison between the baseline and linear evaluations. You will need to download the checkpoints from the google drive link for this to run.
  • python baselines.py --config_file config/Supervised_CLIP_Baselines/sample.yaml: Train a baseline model, in an end-to-end supervised fashion.
  • python noisy_clip_dataparallel.py --config_file config/NoisyRN101/sample.yaml: Trains a CLIP model using contrastive learning.
  • python zeroshot_validation.py --config_file config/NoisyRN101/sample.yaml --ckpt_file rand90_zeroshot.ckpt: Performs zeroshot evaluation of a trained zero-shot clip model. The sample file to be used is the same one specified during training (for flexibility, checkpoint file provided separately).
  • python linear_probe.py --config_file config/LinearProbeSubset/sample.yaml: Trains a linear probe on top of a representation learned using contrastive loss. This requires the user to specify a checkpoint file in the yaml config file.
  • python noise_level_testing.py --config_file config/NoiseLevelTesting/sample.yaml: Evaluates a trained model for various levels of noise in the dataset. This requires the user to specify a checkpoint file in the yaml config file.
Owner
Sriram Ravula
Sriram Ravula
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace ā€” Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
Code for weakly supervised segmentation of a single class

SingleClassRL Implementation of weak single object segmentation from paper "Regularized Loss for Weakly Supervised Single Class Semantic Segmentation"

16 Nov 14, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. šŸ“– Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Jan 03, 2023