[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Overview

Focal Frequency Loss - Official PyTorch Implementation

teaser

This repository provides the official PyTorch implementation for the following paper:

Focal Frequency Loss for Image Reconstruction and Synthesis
Liming Jiang, Bo Dai, Wayne Wu and Chen Change Loy
In ICCV 2021.
Project Page | Paper | Poster | Slides | YouTube Demo

Abstract: Image reconstruction and synthesis have witnessed remarkable progress thanks to the development of generative models. Nonetheless, gaps could still exist between the real and generated images, especially in the frequency domain. In this study, we show that narrowing gaps in the frequency domain can ameliorate image reconstruction and synthesis quality further. We propose a novel focal frequency loss, which allows a model to adaptively focus on frequency components that are hard to synthesize by down-weighting the easy ones. This objective function is complementary to existing spatial losses, offering great impedance against the loss of important frequency information due to the inherent bias of neural networks. We demonstrate the versatility and effectiveness of focal frequency loss to improve popular models, such as VAE, pix2pix, and SPADE, in both perceptual quality and quantitative performance. We further show its potential on StyleGAN2.

Updates

  • [09/2021] The code of Focal Frequency Loss is released.

  • [07/2021] The paper of Focal Frequency Loss is accepted by ICCV 2021.

Quick Start

Run pip install focal-frequency-loss for installation. Then, the following code is all you need.

from focal_frequency_loss import FocalFrequencyLoss as FFL
ffl = FFL(loss_weight=1.0, alpha=1.0)  # initialize nn.Module class

import torch
fake = torch.randn(4, 3, 64, 64)  # replace it with the predicted tensor of shape (N, C, H, W)
real = torch.randn(4, 3, 64, 64)  # replace it with the target tensor of shape (N, C, H, W)

loss = ffl(fake, real)  # calculate focal frequency loss

Tips:

  1. Current supported PyTorch version: torch>=1.1.0. Warnings can be ignored. Please note that experiments in the paper were conducted with torch<=1.7.1,>=1.1.0.
  2. Arguments to initialize the FocalFrequencyLoss class:
    • loss_weight (float): weight for focal frequency loss. Default: 1.0
    • alpha (float): the scaling factor alpha of the spectrum weight matrix for flexibility. Default: 1.0
    • patch_factor (int): the factor to crop image patches for patch-based focal frequency loss. Default: 1
    • ave_spectrum (bool): whether to use minibatch average spectrum. Default: False
    • log_matrix (bool): whether to adjust the spectrum weight matrix by logarithm. Default: False
    • batch_matrix (bool): whether to calculate the spectrum weight matrix using batch-based statistics. Default: False
  3. Experience shows that the main hyperparameters you need to adjust are loss_weight and alpha. The loss weight may always need to be adjusted first. Then, a larger alpha indicates that the model is more focused. We use alpha=1.0 as default.

Exmaple: Image Reconstruction (Vanilla AE)

As a guide, we provide an example of applying the proposed focal frequency loss (FFL) for Vanilla AE image reconstruction on CelebA. Applying FFL is pretty easy. The core details can be found here.

Installation

After installing Anaconda, we recommend you to create a new conda environment with python 3.8.3:

conda create -n ffl python=3.8.3 -y
conda activate ffl

Clone this repo, install PyTorch 1.4.0 (torch>=1.1.0 may also work) and other dependencies:

git clone https://github.com/EndlessSora/focal-frequency-loss.git
cd focal-frequency-loss
pip install -r VanillaAE/requirements.txt

Dataset Preparation

In this example, please download img_align_celeba.zip of the CelebA dataset from its official website. Then, we highly recommend you to unzip this file and symlink the img_align_celeba folder to ./datasets/celeba by:

bash scripts/datasets/prepare_celeba.sh [PATH_TO_IMG_ALIGN_CELEBA]

Or you can simply move the img_align_celeba folder to ./datasets/celeba. The resulting directory structure should be:

├── datasets
│    ├── celeba
│    │    ├── img_align_celeba  
│    │    │    ├── 000001.jpg
│    │    │    ├── 000002.jpg
│    │    │    ├── 000003.jpg
│    │    │    ├── ...

Test and Evaluation Metrics

Download the pretrained models and unzip them to ./VanillaAE/experiments.

We have provided the example test scripts. If you only have a CPU environment, please specify --no_cuda in the script. Run:

bash scripts/VanillaAE/test/celeba_recon_wo_ffl.sh
bash scripts/VanillaAE/test/celeba_recon_w_ffl.sh

The Vanilla AE image reconstruction results will be saved at ./VanillaAE/results by default.

After testing, you can further calculate the evaluation metrics for this example. We have implemented a series of evaluation metrics we used and provided the metric scripts. Run:

bash scripts/VanillaAE/metrics/celeba_recon_wo_ffl.sh
bash scripts/VanillaAE/metrics/celeba_recon_w_ffl.sh

You will see the scores of different metrics. The metric logs will be saved in the respective experiment folders at ./VanillaAE/results.

Training

We have provided the example training scripts. If you only have a CPU environment, please specify --no_cuda in the script. Run:

bash scripts/VanillaAE/train/celeba_recon_wo_ffl.sh
bash scripts/VanillaAE/train/celeba_recon_w_ffl.sh 

After training, inference on the newly trained models is similar to Test and Evaluation Metrics. The results could be better reproduced on NVIDIA Tesla V100 GPUs with torch<=1.7.1,>=1.1.0.

More Results

Here, we show other examples of applying the proposed focal frequency loss (FFL) under diverse settings.

Image Reconstruction (VAE)

reconvae

Image-to-Image Translation (pix2pix | SPADE)

consynI2I

Unconditional Image Synthesis (StyleGAN2)

256x256 results (without truncation) and the mini-batch average spectra (adjusted to better contrast):

unsynsg2res256

1024x1024 results (without truncation) synthesized by StyleGAN2 with FFL:

unsynsg2res1024

Citation

If you find this work useful for your research, please cite our paper:

@inproceedings{jiang2021focal,
  title={Focal Frequency Loss for Image Reconstruction and Synthesis},
  author={Jiang, Liming and Dai, Bo and Wu, Wayne and Loy, Chen Change},
  booktitle={ICCV},
  year={2021}
}

Acknowledgments

The code of Vanilla AE is inspired by PyTorch DCGAN and MUNIT. Part of the evaluation metric code is borrowed from MMEditing. We also apply LPIPS and pytorch-fid as evaluation metrics.

License

All rights reserved. The code is released under the MIT License.

Copyright (c) 2021

Owner
Liming Jiang
Ph.D. student, [email protected]
Liming Jiang
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022
Pytorch tutorials for Neural Style transfert

PyTorch Tutorials This tutorial is no longer maintained. Please use the official version: https://pytorch.org/tutorials/advanced/neural_style_tutorial

Alexis David Jacq 135 Jun 26, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023