Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Overview

NASA-Space-Apps-Challenge-2021

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Documentation of the Illuminat3d App

Version 1.0

The main scope of this application is to plot the light curve of an asteroid for certain values of the input variables. The project consists of two .py files (.py and .py).

GUIFinal.py file

This is the file that we create the User Interface (UI) of our application. It have a space that the user load his 3D model (.stl file format). Then the user must fill in every enrty of the variables in the right form and finally push the Run Program button to see the light curve plot in the corresponding window. The User Interface except all the widgets (Button, Label, Entry, Images) has and 3 functions:

  • browseFiles(): in this function we set the directory that the application can search to find the user's 3D model. When a file is selected then the label of the file explorer change text to specify the path of the file.
  • popup_window_1(): function that triggered when the info button is pressed and pops out an information message.
  • checkInputs(): in this function we check the validity of the input variables and then create an Illuminated object to start running the main program.

Illuminated_Class_Git.py file

In this file we create a class Illuminated to control the core of our program and to plot the light curves of the input 3D models. This class has several functions to produce the expected output.

  • __ init__(self, filename, initRot, rotAxis, frames, albedo, omega): is the contructor of the class which assigns the proper values to the class variables. It recieves as inputs the filename of the 3D model(filename), the initial rotation axis and angle (initRot), the rotational axis (rotAxis), the number of frames (frames), the albedo (albedo) and the omega angle(omega).
  • checkTheModel(self): this function check if the 3D model that the user inserted is valid(close object). Return boolean value True or False.
  • computeIntersectionsAreas(self, multi): recieves a Multipolygon object and returns its total area.
  • multColumns(self, col1, col2): recieves two arrays and produce a new one of the same length. Each element of this array is the multiplication of the two initial arrays' corresponding elements (i.e. new_col[5] = col1[5]*col2[5])
  • sortCoords(self, arr, ind): this is an extra function which sorts the rows of the 2D arr array under the 1D index array.
  • sortDist(self, arr, ind): this is an extra function which sorts the values of the 1D arr array under the 1D index array.
  • desortDist(self, arr, ind): with this function we de-sort the distances array back to its initial structure.
  • computeCoefs(self, coords, dist, dots): compute the coefficients array depending on the coordinates, distances and dots arrays. By taking one triangle at a time we compute the area of each triangle that is seen by the viewer.
  • n_vec(self, tha, thb, thc): return a normalized vector as the cosines of the given angles tha, thb, thc. Each input is the angle that this vector forms with the corresponding axix (x, y, z).
  • v_surf(self, cube ,n_v): return the viewing surface when looking in the n_v direction (either as the source or as the viewer).
  • execution(self): in this function we calibrate the model with its rotation and the position of the light and the viewer and we plot the asteroid's light curve. The number of the plot's points is implied by the number of frames.

Installation

Use the package manager pip to install the necessary libraries.

pip install python-math
pip install numpy-stl
pip install matplotlib
pip install tk
pip install shapely

Execution

After you download the project in your computer, you must move to the directory that the python files are and run the command below.

python GUIFinal.py

Members

  1. Doli Maria
  2. Eleftheriadis Emmanouil
  3. Komitis Dimitrios
  4. Liodis Ioannis
  5. Noula Konstantina
  6. Rodiou Eirini
Owner
Eleftheriadis Emmanouil
Eleftheriadis Emmanouil
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
Sionna: An Open-Source Library for Next-Generation Physical Layer Research

Sionna: An Open-Source Library for Next-Generation Physical Layer Research Sionnaâ„¢ is an open-source Python library for link-level simulations of digi

NVIDIA Research Projects 313 Dec 22, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 02, 2023
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

118 Dec 12, 2022
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022