Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Overview

NASA-Space-Apps-Challenge-2021

Illuminated3D This project participates in the Nasa Space Apps Challenge 2021.

Documentation of the Illuminat3d App

Version 1.0

The main scope of this application is to plot the light curve of an asteroid for certain values of the input variables. The project consists of two .py files (.py and .py).

GUIFinal.py file

This is the file that we create the User Interface (UI) of our application. It have a space that the user load his 3D model (.stl file format). Then the user must fill in every enrty of the variables in the right form and finally push the Run Program button to see the light curve plot in the corresponding window. The User Interface except all the widgets (Button, Label, Entry, Images) has and 3 functions:

  • browseFiles(): in this function we set the directory that the application can search to find the user's 3D model. When a file is selected then the label of the file explorer change text to specify the path of the file.
  • popup_window_1(): function that triggered when the info button is pressed and pops out an information message.
  • checkInputs(): in this function we check the validity of the input variables and then create an Illuminated object to start running the main program.

Illuminated_Class_Git.py file

In this file we create a class Illuminated to control the core of our program and to plot the light curves of the input 3D models. This class has several functions to produce the expected output.

  • __ init__(self, filename, initRot, rotAxis, frames, albedo, omega): is the contructor of the class which assigns the proper values to the class variables. It recieves as inputs the filename of the 3D model(filename), the initial rotation axis and angle (initRot), the rotational axis (rotAxis), the number of frames (frames), the albedo (albedo) and the omega angle(omega).
  • checkTheModel(self): this function check if the 3D model that the user inserted is valid(close object). Return boolean value True or False.
  • computeIntersectionsAreas(self, multi): recieves a Multipolygon object and returns its total area.
  • multColumns(self, col1, col2): recieves two arrays and produce a new one of the same length. Each element of this array is the multiplication of the two initial arrays' corresponding elements (i.e. new_col[5] = col1[5]*col2[5])
  • sortCoords(self, arr, ind): this is an extra function which sorts the rows of the 2D arr array under the 1D index array.
  • sortDist(self, arr, ind): this is an extra function which sorts the values of the 1D arr array under the 1D index array.
  • desortDist(self, arr, ind): with this function we de-sort the distances array back to its initial structure.
  • computeCoefs(self, coords, dist, dots): compute the coefficients array depending on the coordinates, distances and dots arrays. By taking one triangle at a time we compute the area of each triangle that is seen by the viewer.
  • n_vec(self, tha, thb, thc): return a normalized vector as the cosines of the given angles tha, thb, thc. Each input is the angle that this vector forms with the corresponding axix (x, y, z).
  • v_surf(self, cube ,n_v): return the viewing surface when looking in the n_v direction (either as the source or as the viewer).
  • execution(self): in this function we calibrate the model with its rotation and the position of the light and the viewer and we plot the asteroid's light curve. The number of the plot's points is implied by the number of frames.

Installation

Use the package manager pip to install the necessary libraries.

pip install python-math
pip install numpy-stl
pip install matplotlib
pip install tk
pip install shapely

Execution

After you download the project in your computer, you must move to the directory that the python files are and run the command below.

python GUIFinal.py

Members

  1. Doli Maria
  2. Eleftheriadis Emmanouil
  3. Komitis Dimitrios
  4. Liodis Ioannis
  5. Noula Konstantina
  6. Rodiou Eirini
Owner
Eleftheriadis Emmanouil
Eleftheriadis Emmanouil
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

Sebastian Dittert 27 Dec 30, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
Heart Arrhythmia Classification

This program takes and input of an ECG in European Data Format (EDF) and outputs the classification for heartbeats into normal vs different types of arrhythmia . It uses a deep learning model for cla

4 Nov 02, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022