Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

Overview

GPT-GNN: Generative Pre-Training of Graph Neural Networks



GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be applied to large-scale and heterogensous graphs.

You can see our KDD 2020 paper Generative Pre-Training of Graph Neural Networks for more details.

Overview

The key package is GPT_GNN, which contains the the high-level GPT-GNN pretraining framework, base GNN models, and base graph structure and data loader.

To illustrate how to apply the GPT_GNN framework for arbitrary graphs, we provide examples of pre-training on both hetergeneous (OAG) and homogeneous graphs (reddit). Both of them are of large-scale.

Within each example_* package, there is a pretrain_*.py file for pre-training a GNN on the given graph, and also multiple finetune_*.py files for training and validating on downstream tasks.

DataSet

For Open Academic Graph (OAG), we provide a heterogeneous graph containing highly-cited CS papers (8.1G) spanning from 1900-2020. You can download the preprocessed graph via this link. We split the data by their time: Pre-training ( t < 2014 ); Training ( 2014 <= t < 2017); Validation ( t = 2017 ); Testing ( 2018 <= t ). As we use the raw-text as attribute generation task for OAG, we provide a pre-trained word2vec model via this link.

If you want to directly process from raw data, you can download via this link. After downloading it, run preprocess_OAG.py to extract features and store them in our data structure.

For Reddit, we simply download the preprocessed graph using pyG.datasets API, and then turn it into our own data structure using preprocess_reddit.py. We randomly split the data into different sets.

Setup

This implementation is based on pytorch_geometric. To run the code, you need the following dependencies:

You can simply run pip install -r requirements.txt to install all the necessary packages.

Usage

We first introduce the arguments to control hyperparameters. There are mainly three types of arguments, for pre-training; for dataset; for model and optimization.

For pre-training, we provide arguments to control different modules for attribute and edge generation tasks:

  --attr_ratio                     FLOAT   The ratio (0~1) of attribute generation loss .       Default is 0.5.
  --attr_type                      STR     type of attribute decoder ['text' or 'vec']          Default is 'vec'
  --neg_samp_num                   INT     Whether to use layer-norm on the last layer.         Default is False.
  --queue_size                     INT     Max size of adaptive embedding queue.                Default is 256.

For datasets, we provide arguments to control mini-batch sampling:

  --data_dir                       STR     The address of preprocessed graph.
  --pretrain_model_dir             STR     The address for storing the pre-trained models.
  --sample_depth                   INT     How many layers within a mini-batch subgraph         Default is 6.
  --sample_width                   INT     How many nodes to be sampled per layer per type      Default is 128.

For both pre-training and fine-tuning, we provide arguments to control model and optimizer hyperparameters. We highlight some key arguments below:

  --conv_name                      STR     Name of GNN filter (model)                           Default is hgt.
  --scheduler                      STR     Name of learning rate scheduler                      Default is cycle (for pretrain) and cosine (for fine-tuning)
  --n_hid                          INT     Number of hidden dimension                           Default is 400.
  --n_layers                       INT     Number of GNN layers                                 Default is 3.
  --prev_norm                      BOOL    Whether to use layer-norm on previous layers.        Default is False.
  --last_norm                      BOOL    Whether to use layer-norm on the last layer.         Default is False.
  --max_lr                         FLOAT   Maximum learning rate.                               Default is 1e-3 (for pretrain) and 5e-4 (for fine-tuning).  

The following commands pretrain a 3-layer HGT over OAG-CS:

python pretrain_OAG.py --attr_type text --conv_name hgt --n_layers 3 --pretrain_model_dir /datadrive/models/gta_all_cs3

The following commands use the pre-trained model as initialization and finetune on the paper-field classification task using 10% of training and validation data:

python finetune_OAG_PF.py --use_pretrain --pretrain_model_dir /datadrive/models/gta_all_cs3 --n_layer 3 --data_percentage 0.1

Pre-trained Models

  1. The 3-layer HGT model pre-trained over OAG-CS under Time-Transfer Setting via this link
  2. The 3-layer HGT model pre-trained over Reddit via this link

Citation

Please consider citing the following paper when using our code for your application.

@inproceedings{gpt_gnn,
  title={GPT-GNN: Generative Pre-Training of Graph Neural Networks},
  author={Ziniu Hu and Yuxiao Dong and Kuansan Wang and Kai-Wei Chang and Yizhou Sun},
  booktitle={Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
  year={2020}
}

This implementation is mainly based on pyHGT API.

Owner
Ziniu Hu
CS PhD student at UCLA
Ziniu Hu
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Learning to Estimate Hidden Motions with Global Motion Aggregation

Learning to Estimate Hidden Motions with Global Motion Aggregation (GMA) This repository contains the source code for our paper: Learning to Estimate

Shihao Jiang (Zac) 221 Dec 18, 2022
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations

Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires

1 Nov 03, 2021
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022