PCGNN - Procedural Content Generation with NEAT and Novelty

Related tags

Deep LearningPCGNN
Overview

PCGNN - Procedural Content Generation with NEAT and Novelty

Generation ApproachMetricsPaperPosterExamples

About

This is a research project for a BSc (Hons) degree at the University of the Witwatersrand, Johannesburg. It's about combining novelty search and NeuroEvolution of Augmenting Topologies (NEAT) for procedural level generation. We also investigate two new metrics for evaluating the diversity and difficulty of levels. This repo contains our code as well as the final report.

If you just want to get started generating or playing levels, then please look at how to generate levels or the examples. Also feel free to look at the report or a poster that summarises our approach. For information about the metrics and how to use them, see here.

General structure

The main structure of the code is (hopefully) somewhat understandable. First of all, to run any python file in here, use ./run.sh path/to/python/file instead of using python directly, because otherwise modules are not recognised.

Most code in here can be categorised into 3 main archetypes:

  1. General / Method code. This is how the methods were actually implemented, and these files don't do anything useful when run on their own.
  2. Runs / Experiment code. This is a large chunk of what is in here, specifically it is code that runs the methods in some way, and generates results. Most of the results that we generate are in python pickle format.
  3. Analysis Code. We have a pretty clear separation between experiment code (which runs the methods), and analysis code, which takes in the results and generates some usable output, like images, tables, graphs, etc.

File Structure

Most of these are relative to ./src

Method Code
├── novelty_neat     -> Our actual method
├── main
├── baselines
├── games
├── common
├── metrics

Instrumental
├── experiments
├── pipelines
├── runs
├── run.sh
├── scripts
└── slurms

Analysis
├── analysis
├── external

Data
├── levels
├── logs
├── results
├── ../results

Document
├── ../doc/report.pdf

Explanation

The method roughly works as follows:

  1. Evolve a neural network using NEAT (with neat-python)
  2. The fitness function for each neural network is as follows:
    1. Generate N levels per network
    2. Calculate the average solvability of these N levels
    3. Calculate how different these N levels are from each other (called intra-novelty). Calculate the average of this.
    4. Calculate how different these N levels are from the other networks' levels (normal novelty)
    5. Fitness (network) = w1 * Solvability + w2 * Intra-Novelty + w3 * Novelty.
  3. Update the networks using the above calculated fitness & repeat for X generations.

After this 'training' process, take the best network and use it to generate levels in real time.

The way novelty is calculated can be found in the report, or from the original paper by Joel Lehman and Kenneth O. Stanley, here.

We compare levels by considering a few different distance functions, like the normalised Hamming Distance and Image Hashing, but others can also be used.

Get started

To get started you would require a python environment, and env.yml is provided to quickly get started with Conda. Use it like: conda create -f env.yml. There is also another environment that is used specifically for interacting with the gym_pcgrl codebase. If that is something you want to do, then create another environment from the env_pcgrl.yml file.

For full functionality, you will also need java installed. The openjdk 16.0.1 2021-04-20 version worked well.

Additionally, most of the actual experiments used Weights & Biases to log experiments and results, so you would also need to log in using your credentials. The simple entry points described below should not require it.

Entry Points

At the moment, the easiest way to interact with the codebase would be to use the code in src/main/.

Generate Levels.

To have a go at generating levels, then you can use the functions provided in src/main/main.py. Specifically you can call this (remember to be in the src directory before running these commands):

./run.sh main/main.py --method noveltyneat --game mario --mode generate --width 114 --height 14

The above allows you to view some generated levels.

Playing Levels

You can also play the (Mario) levels, or let an agent play them. After generating a level using the above, you can play it by using:

./run.sh main/main.py --game mario --command play-human --filename test_level.txt

Or you can let an A* agent play it using

./run.sh main/main.py --game mario --command play-agent --filename test_level.txt

Features

Works for Tilemaps

Mario Mario

Generates arbitrary sized levels without retraining

Mario

Mario-28 Mario-56 Mario-114 Mario-228

Maze



Experiments

We have many different experiments, with the following meaning:

Generalisation - Generate Larger levels

  • v206: Mario
  • v104: Maze NEAT
  • v107: Maze DirectGA

Metrics

  • v202: Mario
  • v106: Maze

Method runs

  • v105: Maze NEAT
  • v102: Maze DirectGA
  • v204: Mario NEAT
  • v201: Mario DirectGA

The PCGRL code can be found in ./src/external/gym-pcgrl

Reproducing

Our results that were shown and mentioned in the report are mainly found in src/results/.

The following describes how to reproduce our results. Note, there might be some difference in the ordering of the images (e.g. mario-level-0.png and mario-level-1.png will swap), but the set of level images generated should be exactly the same.

The whole process contains 3 steps, and does assume a Slurm based cluster scheduler. Please also change the logfile locations (look at running src/pipelines/replace_all_paths.sh from the repository root after changing paths in there - this updates all paths, and decompresses some results). Our partition name was batch, so this also potentially needs to be updated in the Slurm scripts.

You need to run the following three scripts, in order, and before you start the next one, all the jobs from the previous one must have finished.

Note, timing results probably will differ, and for fairness, we recommend using a machine with at least 8 cores, as we do usually run multiple seeds in parallel. Do not continue on to the next step before all runs in the current one have finished. First of all, cd src/pipelines

  1. ./reproduce_full.sh -> Runs the DirectGA & NoveltyNEAT experiments.
  2. ./analyse_all.sh -> Reruns the metric calculations on the above, and saves it to a easy to work with format
  3. ./finalise_analysis.sh -> Uses the above results to create figures and tables.

The analysis runs (steps 2 and 3.) should automatically use the latest results. If you want to change this, then before going from one step to the next, you will need to manually update the location of the .p files, e.g. between step 1. and 2., you need to update

  • src/analysis/proper_experiments/v200/for_mario_generation_1.py,
  • src/analysis/proper_experiments/v100/for_maze_1.py,
  • src/analysis/proper_experiments/v100/analyse_104.py
  • src/analysis/proper_experiments/v200/analyse_206.py.

Likewise, between step 2. and 3., you need to update (only if you don't want to analyse the latest runs.)

  • src/analysis/proper_experiments/v400/analyse_all_statistical_tests.py and
  • src/analysis/proper_experiments/v400/analyse_all_metrics_properly.py.

For PCGRL, the runs do take quite long, so it is suggested to use our models / results. If you really want to rerun the training, you can look at the Slurm scripts in src/slurms/all_pcgrl/*.batch.

For the PCGRL inference, there are two steps to do, specifically:

  1. Run infer_pcgrl.py
  2. Then run the analysis scripts again, specifically analyse_all.sh and finalise_analysis.sh (noting to change the PCGRL filepaths in for_mario_generation_1.py and for_maze_1.py)

Note: The models for turtle (both Mario and Maze) were too large for Github and are thus not included here, but wide is.

Metrics

We also introduce 2 metrics to measure the diversity and difficulty of levels using A* agents. The code for these metrics are in metrics/a_star/a_star_metrics.py.

A* Diversity Metric

The A* diversity metric uses the trajectory of the agent on two levels to evaluate the diversity. Levels that are solved using different paths are marked as diverse, whereas levels with similar paths are marked as similar.

Largely Similar levels

Diversity = 0.08

Left         Right

Different Levels

Diversity = 0.27

Left         Right

All paths

The green and orange paths are quite similar, leading to low diversity

A* Difficulty

This metric measures how much of the search tree of an A* agent needs to be expanded before the agent can solve the level - more expansion indicates more exploration is required and that the level is more difficult.

Left         Right

Applying the metrics code to levels is done in (among others) src/runs/proper_experiments/v300_metrics.

We also experimented with using RL agents to measure the above characteristics, and results looked promising, but the implementation posed some challenges.

Feel free to look in

  • metrics/rl/tabular/rl_agent_metric.py
  • metrics/rl/tabular/tabular_rl_agent.py
  • metrics/rl/tabular/rl_difficulty_metric.py

for this code.

Assorted

Island Models

There is also some code (not thoroughly tested) that uses multiple island populations and performs regular migration between them and these can be found in novelty_neat/mario/test/island_mario.py, novelty_neat/maze/test/island_model.py and src/runs/proper_experiments/v200_mario/v203_island_neat.py.

Other repositories and projects used

These can be found in src/external. We did edit and adapt some of the code, but most of it is still original.

Some ideas from here

And some snippets from Stack Overflow, which I've tried to reference where they were used.

Acknowledgements

This work is based on the research supported wholly by the National Research Foundation of South Africa (Grant UID 133358).

Owner
Michael Beukman
Michael Beukman
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Antoine Caillon 589 Jan 02, 2023
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022