Automatic Image Background Subtraction

Overview

Automatic Image Background Subtraction

GitHub License Python Version

This repo contains set of scripts for automatic one-shot image background subtraction task using the following strategies:

  1. the appropriate background subtraction services (mostly human based):
  1. U-Net human segmentation net + CascadePSP refinement net:
  2. BackgroundMattingV2 net.

Installation

git clone https://github.com/osmr/bgsub.git
cd bgsub
pip install -r requirements.txt

Usage

  1. Launch a script for background subtraction via benzin.io/remove.bg service:
python subtract_bg_service.py --service=<service> --token=<your token> --input=<directory with images> --output=<output directory with binary masks>

Here:

  • service is benzinio for benzin.io service or removebg for remove.bg,
  • token is a service API token value, which you will receive after registering on the selected service,
  • input is a directory with processing JPEG images (can contain subdirectories),
  • output is a directory with resulted PNG binary masks (it is assumed that all original images had unique names).

Optional parameters:

  • middle is a directory with intermediate images with original masks obtained from the service (PNG with alpha mask),
  • ppdir is a flag for adding extra parrent+parrent directory to the output one (should use as --ppdir).
  • threshold is a threshold for mask binarization (default value is 127),
  • url is an optional custom URL for service,
  • jpg is a flag for forced recompression an input image as JPG (should use as --jpg),
  • not-resize is a flag for suppressing forcible scale the mask to the input image (should use as --not-resize).
  1. Launch a script for background subtraction via human segmentation network:
python subtract_bg_human.py --input=<directory with images> --output=<output directory with binary masks>

Here:

  • input is a directory with processing JPEG images (can contain subdirectories),
  • output is a directory with resulted PNG binary masks (it is assumed that all original images had unique names).

Optional parameters:

  • ppdir is a flag for adding extra parrent+parrent directory to the output one (should use as --ppdir).
  • use-cuda is a flag for using CUDA for network inference (should use as --use-cuda).
  1. Launch a script for background subtraction via matting network:
python subtract_bg_matting.py --input=<directory with images> --bg=<background image path> --output=<output directory with binary masks>

Here:

  • input is a directory with processing JPEG images (can contain subdirectories),
  • bg is a background image file path,
  • output is a directory with resulted PNG binary masks (it is assumed that all original images had unique names).

Optional parameters:

  • threshold is a threshold for mask binarization (default value is 127),
  • ppdir is a flag for adding extra parrent+parrent directory to the output one (should use as --ppdir).
  • use-cuda is a flag for using CUDA for network inference (should use as --use-cuda).

Remark

The script does not recalculate the masks if the target images already exist.

You might also like...
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

⚾🤖⚾ Automatic baseball pitching overlay in realtime
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

DNA-RECON { Automatic Web Reconnaissance Tool }
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

automatic color-grading
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

Owner
Oleg Sémery
Mathematician
Oleg Sémery
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Tomas Jakab 87 Nov 30, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy for sma

THUDM 540 Dec 30, 2022
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Junjie Hu 13 Dec 10, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023