Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

Overview

M4Depth

This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in

M4Depth: A motion-based approach for monocular depth estimation on video sequences

Michaël Fonder, Damien Ernst and Marc Van Droogenbroeck

arXiv pdf

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

Some samples produced by our method: the first line shows the RGB picture capured by the camera, the second the ground-truth depth map and the last one the results produced by our method.

If you find our work useful in your research please consider citing our paper:

@article{Fonder2021M4Depth,
  title     = {M4Depth: A motion-based approach for monocular depth estimation on video sequences},
  author    = {Michael Fonder and Damien Ernst and Marc Van Droogenbroeck},
  booktitle = {arXiv},
  month     = {May},
  year      = {2021}
}

If you use the Mid-Air dataset in your research, please consider citing the related paper:

@INPROCEEDINGS{Fonder2019MidAir,
  author    = {Michael Fonder and Marc Van Droogenbroeck},
  title     = {Mid-Air: A multi-modal dataset for extremely low altitude drone flights},
  booktitle = {Conference on Computer Vision and Pattern Recognition Workshop (CVPRW)},
  year      = {2019},
  month     = {June}
} 

Dependencies

Assuming a fresh Anaconda distribution, you can install the dependencies with:

conda install tensorflow-gpu=1.15 h5py pyquaternion numpy 

Formatting data

Our code works with tensorflow protobuffer files data for training and testing therefore need to be encoded properly before being passed to the network.

Mid-Air dataset

To reproduce the results of our paper, you can use the Mid-Air dataset for training and testing our network. For this, you will first need to download the required data on your computer. The procedure to get them is the following:

  1. Go on the download page of the Mid-Air dataset
  2. Select the "Left RGB" and "Stereo Disparity" image types
  3. Move to the end of the page and enter your email to get the download links (the volume of selected data should be equal to 316.5Go)
  4. Follow the procedure given at the begining of the download page to download and extract the dataset

Once the dataset is downloaded you can generate the required protobuffer files by running the following script:

python3 midair-protobuf_generation.py --db_path path/to/midair-root --output_dir desired/protobuf-location --write

This script generates trajectory sequences with a length of 8 frames and automatically creates the train and test splits for Mid-Air in separated subdirectories.

Custom data

You can also train or test our newtork on your own data. You can generate your own protobuffer files by repurpusing our midair-protobuf_generation.py script. When creating your own protobuffer files, you should pay attention to two major parameters; All sequences should have the same length and each element of a sequence should come with the following data:

  • "image/color_i" : the binary data of the jpeg picture encoding the color data of the frame
  • "Image/depth_i" : the binary data of the 16-bit png file encoding the stereo disparity map
  • "data/omega_i" : a list of three float32 numbers corresponding to the angular rotation between two consecutive frames
  • "data/trans_i" : a list of three float32 numbers corresponding to the translation between two consecutive frames

The subscript i has to be replaced by the index of the data within the trajectory. Translations and rotations are expressed in the standard camera frame of refence axis system.

Training

You can launch a training or a finetuning (if the log_dir already exists) by exectuting the following command line:

python3 m4depth_pipeline.py --train_datadir=path/to/protobuf/dir --log_dir=path/to/logdir --dataset=midair --arch_depth=6 --db_seq_len=8 --seq_len=6 --num_batches=200000 -b=3 -g=1 --summary_interval_secs=900 --save_interval_secs=1800

If needed, other options are available for the training phase and are described in pipeline_options.py and in m4depth_options.py files. Please note that the code can run on multiple GPUs to speedup the training.

Testing/Evaluation

You can launch the evaluation of your test samples by exectuting the following command line:

python3 m4depth_pipeline.py --test_datadir=path/to/protobuf/dir --log_dir=path/to/logdir --dataset=midair --arch_depth=6 --db_seq_len=8 --seq_len=8 --b=3 -g=1

If needed, other options are available for the evaluation phase and are described in pipeline_options.py and in m4depth_options.py files.

Pretrained model

We provide pretrained weights for our model in the "trained_weights" directory. Testing or evaluating a dataset from these weight can be done by executing the following command line:

python3 m4depth_pipeline.py --test_datadir=path/to/protobuf/dir --log_dir=trained_weights/M4Depth-d6 --dataset=midair --arch_depth=6 --db_seq_len=8 --seq_len=8 --b=3 -g=1
Owner
Michaël Fonder
PhD candidate in computer vision and deep learning. Interested in drone flight automation by using an on-board mounted monocular camera.
Michaël Fonder
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
Official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch.

Multi-speaker DGP This repository provides official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch. O

sarulab-speech 24 Sep 07, 2022
Project for tracking occupancy in Tel-Aviv parking lots.

Ahuzat Dibuk - Tracking occupancy in Tel-Aviv parking lots main.py This module was set-up to be executed on Google Cloud Platform. I run it every 15 m

Geva Kipper 35 Nov 22, 2022
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
EEGEyeNet is benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty

Introduction EEGEyeNet EEGEyeNet is a benchmark to evaluate ET prediction based on EEG measurements with an increasing level of difficulty. Overview T

Ard Kastrati 23 Dec 22, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
Using Hotel Data to predict High Value And Potential VIP Guests

Description Using hotel data and AI to predict high value guests and potential VIP guests. Hotel can leverage on prediction resutls to run more effect

HCG 12 Feb 14, 2022