Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

Overview

M4Depth

This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in

M4Depth: A motion-based approach for monocular depth estimation on video sequences

Michaël Fonder, Damien Ernst and Marc Van Droogenbroeck

arXiv pdf

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

Some samples produced by our method: the first line shows the RGB picture capured by the camera, the second the ground-truth depth map and the last one the results produced by our method.

If you find our work useful in your research please consider citing our paper:

@article{Fonder2021M4Depth,
  title     = {M4Depth: A motion-based approach for monocular depth estimation on video sequences},
  author    = {Michael Fonder and Damien Ernst and Marc Van Droogenbroeck},
  booktitle = {arXiv},
  month     = {May},
  year      = {2021}
}

If you use the Mid-Air dataset in your research, please consider citing the related paper:

@INPROCEEDINGS{Fonder2019MidAir,
  author    = {Michael Fonder and Marc Van Droogenbroeck},
  title     = {Mid-Air: A multi-modal dataset for extremely low altitude drone flights},
  booktitle = {Conference on Computer Vision and Pattern Recognition Workshop (CVPRW)},
  year      = {2019},
  month     = {June}
} 

Dependencies

Assuming a fresh Anaconda distribution, you can install the dependencies with:

conda install tensorflow-gpu=1.15 h5py pyquaternion numpy 

Formatting data

Our code works with tensorflow protobuffer files data for training and testing therefore need to be encoded properly before being passed to the network.

Mid-Air dataset

To reproduce the results of our paper, you can use the Mid-Air dataset for training and testing our network. For this, you will first need to download the required data on your computer. The procedure to get them is the following:

  1. Go on the download page of the Mid-Air dataset
  2. Select the "Left RGB" and "Stereo Disparity" image types
  3. Move to the end of the page and enter your email to get the download links (the volume of selected data should be equal to 316.5Go)
  4. Follow the procedure given at the begining of the download page to download and extract the dataset

Once the dataset is downloaded you can generate the required protobuffer files by running the following script:

python3 midair-protobuf_generation.py --db_path path/to/midair-root --output_dir desired/protobuf-location --write

This script generates trajectory sequences with a length of 8 frames and automatically creates the train and test splits for Mid-Air in separated subdirectories.

Custom data

You can also train or test our newtork on your own data. You can generate your own protobuffer files by repurpusing our midair-protobuf_generation.py script. When creating your own protobuffer files, you should pay attention to two major parameters; All sequences should have the same length and each element of a sequence should come with the following data:

  • "image/color_i" : the binary data of the jpeg picture encoding the color data of the frame
  • "Image/depth_i" : the binary data of the 16-bit png file encoding the stereo disparity map
  • "data/omega_i" : a list of three float32 numbers corresponding to the angular rotation between two consecutive frames
  • "data/trans_i" : a list of three float32 numbers corresponding to the translation between two consecutive frames

The subscript i has to be replaced by the index of the data within the trajectory. Translations and rotations are expressed in the standard camera frame of refence axis system.

Training

You can launch a training or a finetuning (if the log_dir already exists) by exectuting the following command line:

python3 m4depth_pipeline.py --train_datadir=path/to/protobuf/dir --log_dir=path/to/logdir --dataset=midair --arch_depth=6 --db_seq_len=8 --seq_len=6 --num_batches=200000 -b=3 -g=1 --summary_interval_secs=900 --save_interval_secs=1800

If needed, other options are available for the training phase and are described in pipeline_options.py and in m4depth_options.py files. Please note that the code can run on multiple GPUs to speedup the training.

Testing/Evaluation

You can launch the evaluation of your test samples by exectuting the following command line:

python3 m4depth_pipeline.py --test_datadir=path/to/protobuf/dir --log_dir=path/to/logdir --dataset=midair --arch_depth=6 --db_seq_len=8 --seq_len=8 --b=3 -g=1

If needed, other options are available for the evaluation phase and are described in pipeline_options.py and in m4depth_options.py files.

Pretrained model

We provide pretrained weights for our model in the "trained_weights" directory. Testing or evaluating a dataset from these weight can be done by executing the following command line:

python3 m4depth_pipeline.py --test_datadir=path/to/protobuf/dir --log_dir=trained_weights/M4Depth-d6 --dataset=midair --arch_depth=6 --db_seq_len=8 --seq_len=8 --b=3 -g=1
Owner
Michaël Fonder
PhD candidate in computer vision and deep learning. Interested in drone flight automation by using an on-board mounted monocular camera.
Michaël Fonder
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

35 Jan 03, 2023
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N

Jaeho Lee 41 Nov 10, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022
YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone

YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for everyone In our recent paper we propose the YourTTS model. YourTTS bri

Edresson Casanova 390 Dec 29, 2022
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022