Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

Overview

M4Depth

This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in

M4Depth: A motion-based approach for monocular depth estimation on video sequences

Michaël Fonder, Damien Ernst and Marc Van Droogenbroeck

arXiv pdf

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

Some samples produced by our method: the first line shows the RGB picture capured by the camera, the second the ground-truth depth map and the last one the results produced by our method.

If you find our work useful in your research please consider citing our paper:

@article{Fonder2021M4Depth,
  title     = {M4Depth: A motion-based approach for monocular depth estimation on video sequences},
  author    = {Michael Fonder and Damien Ernst and Marc Van Droogenbroeck},
  booktitle = {arXiv},
  month     = {May},
  year      = {2021}
}

If you use the Mid-Air dataset in your research, please consider citing the related paper:

@INPROCEEDINGS{Fonder2019MidAir,
  author    = {Michael Fonder and Marc Van Droogenbroeck},
  title     = {Mid-Air: A multi-modal dataset for extremely low altitude drone flights},
  booktitle = {Conference on Computer Vision and Pattern Recognition Workshop (CVPRW)},
  year      = {2019},
  month     = {June}
} 

Dependencies

Assuming a fresh Anaconda distribution, you can install the dependencies with:

conda install tensorflow-gpu=1.15 h5py pyquaternion numpy 

Formatting data

Our code works with tensorflow protobuffer files data for training and testing therefore need to be encoded properly before being passed to the network.

Mid-Air dataset

To reproduce the results of our paper, you can use the Mid-Air dataset for training and testing our network. For this, you will first need to download the required data on your computer. The procedure to get them is the following:

  1. Go on the download page of the Mid-Air dataset
  2. Select the "Left RGB" and "Stereo Disparity" image types
  3. Move to the end of the page and enter your email to get the download links (the volume of selected data should be equal to 316.5Go)
  4. Follow the procedure given at the begining of the download page to download and extract the dataset

Once the dataset is downloaded you can generate the required protobuffer files by running the following script:

python3 midair-protobuf_generation.py --db_path path/to/midair-root --output_dir desired/protobuf-location --write

This script generates trajectory sequences with a length of 8 frames and automatically creates the train and test splits for Mid-Air in separated subdirectories.

Custom data

You can also train or test our newtork on your own data. You can generate your own protobuffer files by repurpusing our midair-protobuf_generation.py script. When creating your own protobuffer files, you should pay attention to two major parameters; All sequences should have the same length and each element of a sequence should come with the following data:

  • "image/color_i" : the binary data of the jpeg picture encoding the color data of the frame
  • "Image/depth_i" : the binary data of the 16-bit png file encoding the stereo disparity map
  • "data/omega_i" : a list of three float32 numbers corresponding to the angular rotation between two consecutive frames
  • "data/trans_i" : a list of three float32 numbers corresponding to the translation between two consecutive frames

The subscript i has to be replaced by the index of the data within the trajectory. Translations and rotations are expressed in the standard camera frame of refence axis system.

Training

You can launch a training or a finetuning (if the log_dir already exists) by exectuting the following command line:

python3 m4depth_pipeline.py --train_datadir=path/to/protobuf/dir --log_dir=path/to/logdir --dataset=midair --arch_depth=6 --db_seq_len=8 --seq_len=6 --num_batches=200000 -b=3 -g=1 --summary_interval_secs=900 --save_interval_secs=1800

If needed, other options are available for the training phase and are described in pipeline_options.py and in m4depth_options.py files. Please note that the code can run on multiple GPUs to speedup the training.

Testing/Evaluation

You can launch the evaluation of your test samples by exectuting the following command line:

python3 m4depth_pipeline.py --test_datadir=path/to/protobuf/dir --log_dir=path/to/logdir --dataset=midair --arch_depth=6 --db_seq_len=8 --seq_len=8 --b=3 -g=1

If needed, other options are available for the evaluation phase and are described in pipeline_options.py and in m4depth_options.py files.

Pretrained model

We provide pretrained weights for our model in the "trained_weights" directory. Testing or evaluating a dataset from these weight can be done by executing the following command line:

python3 m4depth_pipeline.py --test_datadir=path/to/protobuf/dir --log_dir=trained_weights/M4Depth-d6 --dataset=midair --arch_depth=6 --db_seq_len=8 --seq_len=8 --b=3 -g=1
Owner
Michaël Fonder
PhD candidate in computer vision and deep learning. Interested in drone flight automation by using an on-board mounted monocular camera.
Michaël Fonder
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
Advances in Neural Information Processing Systems (NeurIPS), 2020.

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

Google Research 36 Aug 26, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
End-to-End Referring Video Object Segmentation with Multimodal Transformers

End-to-End Referring Video Object Segmentation with Multimodal Transformers This repo contains the official implementation of the paper: End-to-End Re

608 Dec 30, 2022
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022