Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Overview

Auto-Seg-Loss

By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai

This is the official implementation of the ICLR 2021 paper Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation.

Introduction

TL; DR.

Auto Seg-Loss is the first general framework for searching surrogate losses for mainstream semantic segmentation metrics.

Abstract.

Designing proper loss functions is essential in training deep networks. Especially in the field of semantic segmentation, various evaluation metrics have been proposed for diverse scenarios. Despite the success of the widely adopted cross-entropy loss and its variants, the mis-alignment between the loss functions and evaluation metrics degrades the network performance. Meanwhile, manually designing loss functions for each specific metric requires expertise and significant manpower. In this paper, we propose to automate the design of metric-specific loss functions by searching differentiable surrogate losses for each metric. We substitute the non-differentiable operations in the metrics with parameterized functions, and conduct parameter search to optimize the shape of loss surfaces. Two constraints are introduced to regularize the search space and make the search efficient. Extensive experiments on PASCAL VOC and Cityscapes demonstrate that the searched surrogate losses outperform the manually designed loss functions consistently. The searched losses can generalize well to other datasets and networks.

ASL-overview ASL-results

License

This project is released under the Apache 2.0 license.

Citing Auto Seg-Loss

If you find Auto Seg-Loss useful in your research, please consider citing:

@inproceedings{li2020auto,
  title={Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation},
  author={Li, Hao and Tao, Chenxin and Zhu, Xizhou and Wang, Xiaogang and Huang, Gao and Dai, Jifeng},
  booktitle={ICLR},
  year={2021}
}

Configs

PASCAL VOC Search experiments

Target Metric mIoU FWIoU mAcc gAcc BIoU BF1
Parameterization bezier bezier bezier bezier bezier bezier
URL config config config config config config

PASCAL VOC Re-training experiments

Target Metric mIoU FWIoU mAcc gAcc BIoU BF1
Cross Entropy 78.69 91.31 87.31 95.17 70.61 65.30
ASL 80.97 91.93 92.95 95.22 79.27 74.83
URL config
log
config
log
config
log
config
log
config
log
config
log

Note:

1. The search experiments are conducted with R50-DeepLabV3+.

2. The re-training experiments are conducted with R101-DeeplabV3+.

Installation

Our implementation is based on MMSegmentation.

Prerequisites

  • Python>=3.7

    We recommend you to use Anaconda to create a conda environment:

    conda create -n auto_segloss python=3.8 -y

    Then, activate the environment:

    conda activate auto_segloss
  • PyTorch>=1.7.0, torchvision>=0.8.0 (following official instructions).

    For example, if your CUDA version is 10.1, you could install pytorch and torchvision as follows:

    conda install pytorch=1.8.0 torchvision=0.9.0 cudatoolkit=10.1 -c pytorch
  • MMCV>=1.3.0 (following official instruction).

    We recommend installing the pre-built mmcv-full. For example, if your CUDA version is 10.1 and pytorch version is 1.8.0, you could run:

    pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.8.0/index.html

Installing the modified mmsegmentation

git clone https://github.com/fundamentalvision/Auto-Seg-Loss.git
cd Auto-Seg-Loss
pip install -e .

Usage

Dataset preparation

Please follow the official guide of MMSegmentation to organize the datasets. It's highly recommended to symlink the dataset root to Auto-Seg-Loss/data. The recommended data structure is as follows:

Auto-Seg-Loss
├── mmseg
├── ASL_search
└── data
    └── VOCdevkit
        ├── VOC2012
        └── VOCaug

Training models with the provided parameters

The re-training command format is

./ASL_retrain.sh {CONFIG_NAME} [{NUM_GPUS}] [{SEED}]

For example, the command for training a ResNet-101 DeepLabV3+ with 4 GPUs for mIoU is as follows:

./ASL_retrain.sh miou_bezier_10k.py 4

You can also follow the provided configs to modify the mmsegmentation configs, and use Auto Seg-Loss for training other models on other datasets.

Searching for semantic segmentation metrics

The search command format is

./ASL_search.sh {CONFIG_NAME} [{NUM_GPUS}] [{SEED}]

For example, the command for searching for surrogate loss functions for mIoU with 8 GPUs is as follows:

./ASL_search.sh miou_bezier_lr=0.2_eps=0.2.py 8
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

0 May 06, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.

English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s

6.4k Jan 09, 2023
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022