Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Overview

Reconstructing 3D Human Pose by Watching Humans in the Mirror

report
Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou
CVPR 2021 Oral


The videos are from Youtube and Douyin. Please contact us for any copyright issue.

News

  • We build a website for a fast preview of our dataset. The whole dataset will be released later.

Features

In this paper, we introduce the new task of reconstructing 3D human pose from a single image in which we can see the person and the person’s image through a mirror.

This implementation:

  • has the demo of our optimization-based approach implemented purely in PyTorch.
  • provides a method to estimate the surface normal of the mirror from vanishing points.
  • provides an annotator to label the mirror edges for the vanishing points.
  • can estimate the focal length of the Internet mirror images.

Installation

This repo has a close relation with EasyMocap. Please refer to our EasyMocap project for installation.

Demo

Download our zju-m-test.zip and run the following code:

# set the data path
data=<path_to_sample>/zju-m-demo
out=<path_to_sample>/zju-m-demo-output
# extract the video frames
python3 scripts/preprocess/extract_video.py ${data}
# Run demo on videos
python3 apps/demo/1v1p_mirror.py ${data} --out ${out} --vis_smpl --video

Mirrored-Human Dataset (Coming Soon)

Due to the license limitation, we cannot share the raw data directly. We are working hard to organize the Mirrored-Human dataset in terms of url links and timestamps.

See Build Your Internet Dataset if you can't wait for our release.

Annotator

We also provide the annotator metioned in our paper.

The first row shows that we label the edges of the mirror and calculate the vanishing point by the human body automaticly. The intrisic camera parameter can be calculated by this two vanishing points.

The second row shows that to obtain a more accurate vanishing points and camera parameters, we can label the parallel lines in the scene, for example the door, the grid in the ground, and the door.


See EasyMocap/apps/annotator for more instructions.

Build Custom Internet Dataset

See doc/internet.md for more instructions.

Build Custom Evaluation Dataset (Multi-View)

This part is provided for the researchers who want to:

  1. capture more accurate human motion with multiple cameras and a mirror
  2. build a different evaluation dataset

See doc/custom.md for more instructions.

Evaluation

To evaluate the reconstruction part in our paper, see doc/evaluation.md.

Contact

Please open an issue if you have any questions. We appreciate all contributions to improve our project.

If you find some videos that we didn't notice, please tell us.

Citation

@inproceedings{fang2021mirrored,
  title={Reconstructing 3D Human Pose by Watching Humans in the Mirror},
  author={Fang, Qi and Shuai, Qing and Dong, Junting and Bao, Hujun and Zhou, Xiaowei},
  booktitle={CVPR},
  year={2021}
}

Acknowledgement

This project is build on our EasyMocap. We also would like to thank Jianan Zhen and Yuhao Chen for their advice for the paper. Sincere thanks to the performers (Yuji Chen and Hao Xu) in the evaluation dataset and people who uploaded the mirror-human videos to the Internet.

Recommendations to other works from our group

Welcome to checkout our work on learning-based feature matching (LoFTR) and reconstruction (NeuralBody and NeuralRecon) in CVPR 2021.

Owner
ZJU3DV
ZJU3DV is a research group of State Key Lab of CAD&CG, Zhejiang University. We focus on the research of 3D computer vision, SLAM and AR.
ZJU3DV
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
Pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion"

MOSNet pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion" https://arxiv.org/abs/1904.08352 Dependency L

9 Nov 18, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022