Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Overview

Reconstructing 3D Human Pose by Watching Humans in the Mirror

report
Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou
CVPR 2021 Oral


The videos are from Youtube and Douyin. Please contact us for any copyright issue.

News

  • We build a website for a fast preview of our dataset. The whole dataset will be released later.

Features

In this paper, we introduce the new task of reconstructing 3D human pose from a single image in which we can see the person and the person’s image through a mirror.

This implementation:

  • has the demo of our optimization-based approach implemented purely in PyTorch.
  • provides a method to estimate the surface normal of the mirror from vanishing points.
  • provides an annotator to label the mirror edges for the vanishing points.
  • can estimate the focal length of the Internet mirror images.

Installation

This repo has a close relation with EasyMocap. Please refer to our EasyMocap project for installation.

Demo

Download our zju-m-test.zip and run the following code:

# set the data path
data=<path_to_sample>/zju-m-demo
out=<path_to_sample>/zju-m-demo-output
# extract the video frames
python3 scripts/preprocess/extract_video.py ${data}
# Run demo on videos
python3 apps/demo/1v1p_mirror.py ${data} --out ${out} --vis_smpl --video

Mirrored-Human Dataset (Coming Soon)

Due to the license limitation, we cannot share the raw data directly. We are working hard to organize the Mirrored-Human dataset in terms of url links and timestamps.

See Build Your Internet Dataset if you can't wait for our release.

Annotator

We also provide the annotator metioned in our paper.

The first row shows that we label the edges of the mirror and calculate the vanishing point by the human body automaticly. The intrisic camera parameter can be calculated by this two vanishing points.

The second row shows that to obtain a more accurate vanishing points and camera parameters, we can label the parallel lines in the scene, for example the door, the grid in the ground, and the door.


See EasyMocap/apps/annotator for more instructions.

Build Custom Internet Dataset

See doc/internet.md for more instructions.

Build Custom Evaluation Dataset (Multi-View)

This part is provided for the researchers who want to:

  1. capture more accurate human motion with multiple cameras and a mirror
  2. build a different evaluation dataset

See doc/custom.md for more instructions.

Evaluation

To evaluate the reconstruction part in our paper, see doc/evaluation.md.

Contact

Please open an issue if you have any questions. We appreciate all contributions to improve our project.

If you find some videos that we didn't notice, please tell us.

Citation

@inproceedings{fang2021mirrored,
  title={Reconstructing 3D Human Pose by Watching Humans in the Mirror},
  author={Fang, Qi and Shuai, Qing and Dong, Junting and Bao, Hujun and Zhou, Xiaowei},
  booktitle={CVPR},
  year={2021}
}

Acknowledgement

This project is build on our EasyMocap. We also would like to thank Jianan Zhen and Yuhao Chen for their advice for the paper. Sincere thanks to the performers (Yuji Chen and Hao Xu) in the evaluation dataset and people who uploaded the mirror-human videos to the Internet.

Recommendations to other works from our group

Welcome to checkout our work on learning-based feature matching (LoFTR) and reconstruction (NeuralBody and NeuralRecon) in CVPR 2021.

Owner
ZJU3DV
ZJU3DV is a research group of State Key Lab of CAD&CG, Zhejiang University. We focus on the research of 3D computer vision, SLAM and AR.
ZJU3DV
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021