Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Overview

Reconstructing 3D Human Pose by Watching Humans in the Mirror

report
Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou
CVPR 2021 Oral


The videos are from Youtube and Douyin. Please contact us for any copyright issue.

News

  • We build a website for a fast preview of our dataset. The whole dataset will be released later.

Features

In this paper, we introduce the new task of reconstructing 3D human pose from a single image in which we can see the person and the person’s image through a mirror.

This implementation:

  • has the demo of our optimization-based approach implemented purely in PyTorch.
  • provides a method to estimate the surface normal of the mirror from vanishing points.
  • provides an annotator to label the mirror edges for the vanishing points.
  • can estimate the focal length of the Internet mirror images.

Installation

This repo has a close relation with EasyMocap. Please refer to our EasyMocap project for installation.

Demo

Download our zju-m-test.zip and run the following code:

# set the data path
data=<path_to_sample>/zju-m-demo
out=<path_to_sample>/zju-m-demo-output
# extract the video frames
python3 scripts/preprocess/extract_video.py ${data}
# Run demo on videos
python3 apps/demo/1v1p_mirror.py ${data} --out ${out} --vis_smpl --video

Mirrored-Human Dataset (Coming Soon)

Due to the license limitation, we cannot share the raw data directly. We are working hard to organize the Mirrored-Human dataset in terms of url links and timestamps.

See Build Your Internet Dataset if you can't wait for our release.

Annotator

We also provide the annotator metioned in our paper.

The first row shows that we label the edges of the mirror and calculate the vanishing point by the human body automaticly. The intrisic camera parameter can be calculated by this two vanishing points.

The second row shows that to obtain a more accurate vanishing points and camera parameters, we can label the parallel lines in the scene, for example the door, the grid in the ground, and the door.


See EasyMocap/apps/annotator for more instructions.

Build Custom Internet Dataset

See doc/internet.md for more instructions.

Build Custom Evaluation Dataset (Multi-View)

This part is provided for the researchers who want to:

  1. capture more accurate human motion with multiple cameras and a mirror
  2. build a different evaluation dataset

See doc/custom.md for more instructions.

Evaluation

To evaluate the reconstruction part in our paper, see doc/evaluation.md.

Contact

Please open an issue if you have any questions. We appreciate all contributions to improve our project.

If you find some videos that we didn't notice, please tell us.

Citation

@inproceedings{fang2021mirrored,
  title={Reconstructing 3D Human Pose by Watching Humans in the Mirror},
  author={Fang, Qi and Shuai, Qing and Dong, Junting and Bao, Hujun and Zhou, Xiaowei},
  booktitle={CVPR},
  year={2021}
}

Acknowledgement

This project is build on our EasyMocap. We also would like to thank Jianan Zhen and Yuhao Chen for their advice for the paper. Sincere thanks to the performers (Yuji Chen and Hao Xu) in the evaluation dataset and people who uploaded the mirror-human videos to the Internet.

Recommendations to other works from our group

Welcome to checkout our work on learning-based feature matching (LoFTR) and reconstruction (NeuralBody and NeuralRecon) in CVPR 2021.

Owner
ZJU3DV
ZJU3DV is a research group of State Key Lab of CAD&CG, Zhejiang University. We focus on the research of 3D computer vision, SLAM and AR.
ZJU3DV
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

1 Nov 12, 2021
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022