code for paper -- "Seamless Satellite-image Synthesis"

Overview

Seamless Satellite-image Synthesis

by Jialin Zhu and Tom Kelly.

Project site. The code of our models borrows heavily from the BicycleGAN repository and SPADE repository. Some missing description can be found in the original repository.

Watch the video

YouTube video

Web UI system

Watch the video

  • The UI system is developed by web framework - Django.
  • Clone the code and cd web_ui
  • Install required packages(mainly Django 3.1 and PyTorch 1.7.1)
    • These are easy to install so we do not provide a requirements.txt file.
    • Packages other than Django and PyTorch can be installed in sequence according to the output error logs.
  • Download pre-trained weights and put them in web_ui/sss_ui/checkpoints.
  • Run python manage.py migrate and python manage.py makemigrations.
  • Run python runserver.py.
  • Access 127.0.0.1/index thourough a web browser.
  • Start play with the UI system

Pre-trained weights are available here: Mega link

We provide some preset map data, if you want more extensive or other map data, you need to replace the map data yourself. There are some features that have not yet been implemented. Please report bugs as github issues.

SSS pipeline

The SSS whole pipeline will allow users to generate a set of satellite images from map data of three different scale level.

  • Clone the code and cd SPADE.
  • Install required packages(mainly PyTorch 1.7.1)
  • Run bash scit_m.sh [level_1_dataset_dir] [raw_data_dir] [results_output_dir].
  • The generated satellite images are in the [results_output_path] folder.

We provide some preset map data, if you want more extensive or other map data, you need to replace the map data yourself.

Training

You can also re-train the whole pipeline or train with your own data. For copyright reasons, we will not provide download links for the data we use. But they are very easy to obtain, especially for academic institutions such as universities. Our training data is from Digimap. We use OS MasterMap® Topography Layer with GDAL and GeoPandas to render map images, and we use satellite images from Aerial via Getmapping.

To train map2sat for level 1:

  • Clone the code and cd SPADE.
  • Run python train.py --name [z1] --dataset_mode ins --label_dir [label_dir] --image_dir [image_dir] --instance_dir [instance_dir] --label_nc 13 --load_size 256 --crop_size 256 --niter_decay 20 --use_vae --ins_edge --gpu_ids 0,1,2,3 --batchSize 16.
  • We recommend using a larger batch size so that the encoder can generate results with greater style differences.

To train map2sat for level z (z > 1):

  • Clone the code and cd SPADE.
  • Run python trainCG.py --name [z2_cg] --dataset_mode insgb --label_dir [label_dir] --image_dir [image_dir] --instance_dir [instance_dir] --label_nc 13 --load_size 256 --crop_size 256 --niter_decay 20 --ins_edge --cg --netG spadebranchn --cg_size 256 --gbk_size 8.

To train seam2cont:

  • Clone the code and cd BicycleGAN.
  • Run python train.py --dataroot [dataset_dir] --name [z1sn] --model sn --direction AtoB --load_size 256 --save_epoch_freq 201 --lambda_ml 0 --input_nc 8 --dataset_mode sn --seams_map --batch_size 1 --ndf 32 --conD --forced_mask.

Citation

@inproceedings{zhu2021seamless,
  title={Seamless Satellite-image Synthesis},
  author={Zhu, J and Kelly, T},
  booktitle={Computer Graphics Forum},
  year={2021},
  organization={Wiley}
}

Acknowledgements

We would like to thank Nvidia Corporation for hardware and Ordnance Survey Mapping for map data which made this project possible. This work was undertaken on ARC4, part of the High Performance Computing facilities at the University of Leeds, UK. This work made use of the facilities of the N8 Centre of Excellence in Computationally Intensive Research (N8 CIR) provided and funded by the N8 research partnership and EPSRC (Grant No. EP/T022167/1).

Owner
Light
I am really skilled at printing "hello world" in various programming languages.
Light
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Build Low Code Automated Tensorflow, What-IF explainable models in just 3 lines of code.

Build Low Code Automated Tensorflow explainable models in just 3 lines of code.

Hasan Rafiq 170 Dec 26, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
Codes accompanying the paper "Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning" (NeurIPS 2021 Spotlight

Implicit Constraint Q-Learning This is a pytorch implementation of ICQ on Datasets for Deep Data-Driven Reinforcement Learning (D4RL) and ICQ-MA on SM

42 Dec 23, 2022
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
The original weights of some Caffe models, ported to PyTorch.

pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit

Katherine Crowson 9 Nov 04, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann.

CVLAB @ EPFL 89 Dec 26, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021