code for paper -- "Seamless Satellite-image Synthesis"

Overview

Seamless Satellite-image Synthesis

by Jialin Zhu and Tom Kelly.

Project site. The code of our models borrows heavily from the BicycleGAN repository and SPADE repository. Some missing description can be found in the original repository.

Watch the video

YouTube video

Web UI system

Watch the video

  • The UI system is developed by web framework - Django.
  • Clone the code and cd web_ui
  • Install required packages(mainly Django 3.1 and PyTorch 1.7.1)
    • These are easy to install so we do not provide a requirements.txt file.
    • Packages other than Django and PyTorch can be installed in sequence according to the output error logs.
  • Download pre-trained weights and put them in web_ui/sss_ui/checkpoints.
  • Run python manage.py migrate and python manage.py makemigrations.
  • Run python runserver.py.
  • Access 127.0.0.1/index thourough a web browser.
  • Start play with the UI system

Pre-trained weights are available here: Mega link

We provide some preset map data, if you want more extensive or other map data, you need to replace the map data yourself. There are some features that have not yet been implemented. Please report bugs as github issues.

SSS pipeline

The SSS whole pipeline will allow users to generate a set of satellite images from map data of three different scale level.

  • Clone the code and cd SPADE.
  • Install required packages(mainly PyTorch 1.7.1)
  • Run bash scit_m.sh [level_1_dataset_dir] [raw_data_dir] [results_output_dir].
  • The generated satellite images are in the [results_output_path] folder.

We provide some preset map data, if you want more extensive or other map data, you need to replace the map data yourself.

Training

You can also re-train the whole pipeline or train with your own data. For copyright reasons, we will not provide download links for the data we use. But they are very easy to obtain, especially for academic institutions such as universities. Our training data is from Digimap. We use OS MasterMap® Topography Layer with GDAL and GeoPandas to render map images, and we use satellite images from Aerial via Getmapping.

To train map2sat for level 1:

  • Clone the code and cd SPADE.
  • Run python train.py --name [z1] --dataset_mode ins --label_dir [label_dir] --image_dir [image_dir] --instance_dir [instance_dir] --label_nc 13 --load_size 256 --crop_size 256 --niter_decay 20 --use_vae --ins_edge --gpu_ids 0,1,2,3 --batchSize 16.
  • We recommend using a larger batch size so that the encoder can generate results with greater style differences.

To train map2sat for level z (z > 1):

  • Clone the code and cd SPADE.
  • Run python trainCG.py --name [z2_cg] --dataset_mode insgb --label_dir [label_dir] --image_dir [image_dir] --instance_dir [instance_dir] --label_nc 13 --load_size 256 --crop_size 256 --niter_decay 20 --ins_edge --cg --netG spadebranchn --cg_size 256 --gbk_size 8.

To train seam2cont:

  • Clone the code and cd BicycleGAN.
  • Run python train.py --dataroot [dataset_dir] --name [z1sn] --model sn --direction AtoB --load_size 256 --save_epoch_freq 201 --lambda_ml 0 --input_nc 8 --dataset_mode sn --seams_map --batch_size 1 --ndf 32 --conD --forced_mask.

Citation

@inproceedings{zhu2021seamless,
  title={Seamless Satellite-image Synthesis},
  author={Zhu, J and Kelly, T},
  booktitle={Computer Graphics Forum},
  year={2021},
  organization={Wiley}
}

Acknowledgements

We would like to thank Nvidia Corporation for hardware and Ordnance Survey Mapping for map data which made this project possible. This work was undertaken on ARC4, part of the High Performance Computing facilities at the University of Leeds, UK. This work made use of the facilities of the N8 Centre of Excellence in Computationally Intensive Research (N8 CIR) provided and funded by the N8 research partnership and EPSRC (Grant No. EP/T022167/1).

Owner
Light
I am really skilled at printing "hello world" in various programming languages.
Light
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
Aydin is a user-friendly, feature-rich, and fast image denoising tool

Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.

Royer Lab 99 Dec 14, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022