Semantic graph parser based on Categorial grammars

Overview

Lambekseq

semgraph

"Everyone who failed Greek or Latin hates it."


This package is for proving theorems in Categorial grammars (CG) and constructing semantic graphs, i.e., semgraphs on top of that.

Three CG calculuses are supported here (see below). A "proof" is simply a set of atom links, abstracting away from derivaiton details.

Requirements

Add the path to the package to PYTHONPATH. None of the below packages is needed to use the theorem proving facility.

Semantic graphs derive from digraph:

For graph visualization we use

Background

This package is used for the author's PhD thesis in progress.

Categorial grammars:

Semantic graphs:

Theorem Proving

To prove a theorem, use atomlink module. For example, using Lambek Calculus to prove np np\s -> s.

>>> import lambekseq.atomlink as al

>>> con, *pres = 's np np\\s'.split()
>>> con, pres, parser, _ = al.searchLinks(al.LambekProof, con, pres)
>>> al.printLinks(con, pres, parser)

This outputs

----------
s_0 <= np_1 np_2\s_3

(np_1, np_2), (s_0, s_3)

Total: 1

You can run atomlink in command line. The following finds proofs for the theorems in input, using abbreviation definitions in abbr.json and Contintuized CCG.

$ python atomlink.py -i input -a abbr.json -c ccg --earlyCollapse

Theorem s qp vp/s qp vp (the first item is the conclusion, the rest the premises) is thus proved as follows:

<class 'lambekseq.cntccg.Cntccg'>
----------
s_0 <= (s_1^np_2)!s_3 (np_4\s_5)/s_6 (s_7^np_8)!s_9 np_10\s_11

(np_10, np_8), (np_2, np_4), (s_0, s_3), (s_1, s_5), (s_11, s_7), (s_6, s_9)

Total: 1

When using Lambek/Displacement/CCG calculus, you can also inspect the proof tree that yields atom links:

>>> con, *pres = 's', 'np', '(np\\s)/np', 'np'
>>> con, pres, parser, _ = al.searchLinks(al.LambekProof, con, pres)
>>> parser.buildTree()
>>> parser.printTree()
(np_1, np_2), (np_4, np_5), (s_0, s_3)
........ s_3 -> s_0
........ np_1 -> np_2
.... np_1 np_2\s_3 -> s_0
.... np_5 -> np_4
 np_1 (np_2\s_3)/np_4 np_5 -> s_0

You can export the tree to Bussproofs code for Latex display:

bussproof

>>> print(parser.bussproof)
...
\begin{prooftree}
\EnableBpAbbreviations
        \AXC{s$_{3}$ $\to$ s$_{0}$}
        \AXC{np$_{1}$ $\to$ np$_{2}$}
    \BIC{np$_{1}$\enskip{}np$_{2}$\textbackslash s$_{3}$ $\to$ s$_{0}$}
    \AXC{np$_{5}$ $\to$ np$_{4}$}
\BIC{np$_{1}$\enskip{}(np$_{2}$\textbackslash s$_{3}$)/np$_{4}$\enskip{}np$_{5}$ $\to$ s$_{0}$}
\end{prooftree}

Run python atomlink.py --help for details.

Semantic Parsing

Use semcomp module for semantic parsing. You need to define graph schemata for parts of speech as in schema.json.

>>> from lambekseq.semcomp import SemComp
>>> SemComp.load_lexicon(abbr_path='abbr.json',
                         vocab_path='schema.json')
>>> ex = 'a boy walked a dog'
>>> pos = 'ind n vt ind n'
>>> sc = SemComp(zip(ex.split(), pos.split()), calc='dsp')
>>> sc.unify('s')

Use graphviz's Source to display the semgraphs constructed from the input:

>>> from graphviz import Source
>>> Source(sc.semantics[0].dot_styled)

This outputs
a boy walked a dog

You can inspect the syntax behind this parse:

>>> sc.syntax[0].insight.con, sc.syntax[0].insight.pres
('s_0', ['np_1/n_2', 'n_3', '(np_4\\s_5)/np_6', 'np_7/n_8', 'n_9'])

>>> sc.syntax[0].links
['(n_2, n_3)', '(n_8, n_9)', '(np_1, np_4)', '(np_6, np_7)', '(s_0, s_5)']

See demo/demo.ipynb for more examples.

You can export semgraphs to tikz code that can be visually edited by TikZit.

a boy walked a dog

>>> print(sc.semantics[0].tikz)
\begin{tikzpicture}
\begin{pgfonlayer}{nodelayer}
        \node [style=node] (i1) at (-1.88,2.13) {};
        \node [style=none] (g2u0) at (-2.99,3.07) {};
        \node [style=node] (i0) at (0.99,-2.68) {};
        \node [style=none] (g5u0) at (1.09,-4.13) {};
        \node [style=node] (g3a0) at (0.74,0.43) {};
        \node [style=none] (g3u0) at (2.05,1.19) {};
        \node [style=none] (0) at (-3.04,2.89) {boy};
        \node [style=none] (1) at (0.61,-4.00) {dog};
        \node [style=none] (2) at (-0.66,0.72) {ag};
        \node [style=none] (3) at (0.63,-0.77) {th};
        \node [style=none] (4) at (2.42,1.09) {walked};
\end{pgfonlayer}
\begin{pgfonlayer}{edgelayer}
        \draw [style=arrow] (i1) to (g2u0.center);
        \draw [style=arrow] (i0) to (g5u0.center);
        \draw [style=arrow] (g3a0) to (i1);
        \draw [style=arrow] (g3a0) to (i0);
        \draw [style=arrow] (g3a0) to (g3u0.center);
\end{pgfonlayer}
\end{tikzpicture}
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022