A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

Related tags

Deep LearningTCV-X21
Overview

TCV-X21 validation for divertor turbulence simulations

Quick links

arXiv PDF

Binder DOI

Dataset licence Software licence

Test Python package codecov

Intro

Welcome to TCV-X21. We're glad you've found us!

This repository is designed to let you perform the analysis presented in Oliveira and Body et. al., Nuclear Fusion, 2021, both using the data given in the paper, and with a turbulence simulation of your own. We hope that, by providing the analysis, the TCV-X21 case can be used as a standard validation and bench-marking case for turbulence simulations of the divertor in fusion experiments. The repository allows you to scrutinise and suggest improvements to the analysis (there's always room for improvement), to directly interact with and explore the data in greater depth than is possible in a paper, and — we hope — use this case to test a simulation of your own.

To use this repository, you'll need to either use the mybinder.org link below OR user rights on a computer with Python-3, conda and git-lfs pre-installed.

Video tutorial

This quick tutorial shows you how to navigate the repository and use some of the functionality of the library.

Video_tutorial.mp4

What can you find in this repository

  • 1.experimental_data: data from the TCV experimental campaign, in NetCDF, MATLAB and IMAS formats, as well as information about the reference scenario, and the reference magnetic geometry (in .eqdsk, IMAS and PARALLAX-nc formats)
  • 2.simulation_data: data from simulations of the TCV-X21 case, in NetCDF format, as well as raw data files and conversion routines
  • 3.results: high resolution PNGs and LaTeX-ready tables for a paper
  • tcvx21: a Python library of software, which includes
    • record_c: a class to interface with NetCDF/HDF5 formatted data files
    • observable_c: a class to interact with and plot observables
    • file_io: tools to interact with MATLAB and JSON files
    • quant_validation: routines to perform the quantitative validation
    • analysis: statistics, curve-fitting, bootstrap algorithms, contour finding
    • units_m.py: setting up pint-based unit-aware analysis (it's difficult to overstate how cool this library is)
    • grillix_post: a set of routines used for post-processing GRILLIX simulation data, which might help if you're trying to post-process your own simulation. You can see a worked example in simulation_postprocessing.ipynb
  • notebooks: Jupyter notebooks, which allow us to provide code with outputs and comments together
    • simulation_setup.ipynb: what you might need to set up a simulation to test
    • simulation_postprocessing.ipynb: how to post-process the data
    • data_exploration.ipynb: some examples to get you started exploring the data
    • bulk_process.ipynb: runs over every observable to make the results — which you'll need to do if you're writing a paper from the results
  • tests: tests to make sure that we haven't broken anything in the analysis routines
  • README.md: this file, which helps you to get the software up and running, and to explain where you can find everything you need. It also provides the details of the licencing (below). There's more specific README.md files in several of the subfolders.

and lots more files. If you're not a developer, you can safely ignore these.

What can't you find in this repository

Due to licencing issues, the source code of the simulations is not provided. Sorry!

Also, the raw simulations are not provided here due to space limitations (some runs have more than a terabyte of data), but they are all backed up on archive servers. If you'd like to access the raw data, get in contact.

License and attribution notice

The TCV-X21 datasets are licenced under a Creative Commons Attribution 4.0 license, given in LICENCE. The source code of the analysis routines and Python library is licenced under a MIT license, given in tcvx21/LICENCE.

For the datasets, we ask that you provide attribution if using this data via the citation in the CITATION.cff file. We additionally require that you mark any changes to the dataset, and state specifically that the authors do not endorse your work unless such endorsement has been expressly given.

For the software, you can use, modify and share without attribution or marking changes.

Running the Jupyter notebooks (installation as non-root user)

To run the Jupyter notebooks, you have two options. The first is to use the mybinder.org interface, which let you interact with the notebooks via a web interface. You can launch the binder for this repository by clicking the binder badge in the repository header. Note that not all of the repository content is copied to the Docker image (this is specified in .dockerignore). The large checkpoint files are not included in the image, although they can be found in the repository at 2.simulation_data/GRILLIX/checkpoints_for_1mm. Additionally, the default docker image will not work with git.

Alternatively, if you'd like to run the notebooks locally or to extend the repository, you'll need to install additional Python packages. First of all, you need Python-3 and conda installed (latest versions recommended). Then, to install the necessary packages, we make a sandbox environment. This has a few advantages to installing packages globally — sudo rights are not required, you can install package versions without risking breaking other Python scripts, and if everything goes terribly wrong you can easily delete everything and restart. We've included a simple shell script to perform the necessary steps, which you can execute with

./install_env.sh

This will install the library in a subfolder of the TCV-X21 repository called tcvx21_env. It will also add a kernel to your global Jupyter installation. To remove the repository, you can delete the folder tcvx21_env and run jupyter kernelspec uninstall tcvx21.

To run tests and open Jupyter

Once you've installed via either option, you can activate the python environment with conda activate ./tcvx21_env. To deactivate, run conda deactivate.

Then, it is recommended to run the test suite with pytest which ensures that everything is installed and working correctly. If something fails, let us know in the issues. Note that this executes all of the analysis notebooks, so it might take a while to run.

Finally, run jupyter lab to open a Jupyter server in the TCV-X21 repository. Then, you can open any of the notebooks (.ipynb extension) by clicking in the side-bar.

A note on pinned dependencies

To ensure that the results are reproducible, the environment.yml file has pinned dependencies. However, if you want to use this software as a library, pinned dependencies are unnecessarily restrictive. You can remove the versions after the = sign in the environment.yml, but be warned that things might break.

You might also like...
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

This is the official repo for TransFill:  Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset.
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx]
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

An experimental technique for efficiently exploring neural architectures.
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

A simple but complete full-attention transformer with a set of promising experimental features from various papers
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Comments
  • Repair results

    Repair results

    It appears that the 3.results folder had not been updated with the outputs of the notebooks.

    I've rerun the notebooks and now have the latest results in the folder.

    opened by TBody 1
Releases(v1.0)
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
Paper list of log-based anomaly detection

Paper list of log-based anomaly detection

Weibin Meng 411 Dec 05, 2022
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

249 Jan 03, 2023
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022