A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

Related tags

Deep LearningTCV-X21
Overview

TCV-X21 validation for divertor turbulence simulations

Quick links

arXiv PDF

Binder DOI

Dataset licence Software licence

Test Python package codecov

Intro

Welcome to TCV-X21. We're glad you've found us!

This repository is designed to let you perform the analysis presented in Oliveira and Body et. al., Nuclear Fusion, 2021, both using the data given in the paper, and with a turbulence simulation of your own. We hope that, by providing the analysis, the TCV-X21 case can be used as a standard validation and bench-marking case for turbulence simulations of the divertor in fusion experiments. The repository allows you to scrutinise and suggest improvements to the analysis (there's always room for improvement), to directly interact with and explore the data in greater depth than is possible in a paper, and — we hope — use this case to test a simulation of your own.

To use this repository, you'll need to either use the mybinder.org link below OR user rights on a computer with Python-3, conda and git-lfs pre-installed.

Video tutorial

This quick tutorial shows you how to navigate the repository and use some of the functionality of the library.

Video_tutorial.mp4

What can you find in this repository

  • 1.experimental_data: data from the TCV experimental campaign, in NetCDF, MATLAB and IMAS formats, as well as information about the reference scenario, and the reference magnetic geometry (in .eqdsk, IMAS and PARALLAX-nc formats)
  • 2.simulation_data: data from simulations of the TCV-X21 case, in NetCDF format, as well as raw data files and conversion routines
  • 3.results: high resolution PNGs and LaTeX-ready tables for a paper
  • tcvx21: a Python library of software, which includes
    • record_c: a class to interface with NetCDF/HDF5 formatted data files
    • observable_c: a class to interact with and plot observables
    • file_io: tools to interact with MATLAB and JSON files
    • quant_validation: routines to perform the quantitative validation
    • analysis: statistics, curve-fitting, bootstrap algorithms, contour finding
    • units_m.py: setting up pint-based unit-aware analysis (it's difficult to overstate how cool this library is)
    • grillix_post: a set of routines used for post-processing GRILLIX simulation data, which might help if you're trying to post-process your own simulation. You can see a worked example in simulation_postprocessing.ipynb
  • notebooks: Jupyter notebooks, which allow us to provide code with outputs and comments together
    • simulation_setup.ipynb: what you might need to set up a simulation to test
    • simulation_postprocessing.ipynb: how to post-process the data
    • data_exploration.ipynb: some examples to get you started exploring the data
    • bulk_process.ipynb: runs over every observable to make the results — which you'll need to do if you're writing a paper from the results
  • tests: tests to make sure that we haven't broken anything in the analysis routines
  • README.md: this file, which helps you to get the software up and running, and to explain where you can find everything you need. It also provides the details of the licencing (below). There's more specific README.md files in several of the subfolders.

and lots more files. If you're not a developer, you can safely ignore these.

What can't you find in this repository

Due to licencing issues, the source code of the simulations is not provided. Sorry!

Also, the raw simulations are not provided here due to space limitations (some runs have more than a terabyte of data), but they are all backed up on archive servers. If you'd like to access the raw data, get in contact.

License and attribution notice

The TCV-X21 datasets are licenced under a Creative Commons Attribution 4.0 license, given in LICENCE. The source code of the analysis routines and Python library is licenced under a MIT license, given in tcvx21/LICENCE.

For the datasets, we ask that you provide attribution if using this data via the citation in the CITATION.cff file. We additionally require that you mark any changes to the dataset, and state specifically that the authors do not endorse your work unless such endorsement has been expressly given.

For the software, you can use, modify and share without attribution or marking changes.

Running the Jupyter notebooks (installation as non-root user)

To run the Jupyter notebooks, you have two options. The first is to use the mybinder.org interface, which let you interact with the notebooks via a web interface. You can launch the binder for this repository by clicking the binder badge in the repository header. Note that not all of the repository content is copied to the Docker image (this is specified in .dockerignore). The large checkpoint files are not included in the image, although they can be found in the repository at 2.simulation_data/GRILLIX/checkpoints_for_1mm. Additionally, the default docker image will not work with git.

Alternatively, if you'd like to run the notebooks locally or to extend the repository, you'll need to install additional Python packages. First of all, you need Python-3 and conda installed (latest versions recommended). Then, to install the necessary packages, we make a sandbox environment. This has a few advantages to installing packages globally — sudo rights are not required, you can install package versions without risking breaking other Python scripts, and if everything goes terribly wrong you can easily delete everything and restart. We've included a simple shell script to perform the necessary steps, which you can execute with

./install_env.sh

This will install the library in a subfolder of the TCV-X21 repository called tcvx21_env. It will also add a kernel to your global Jupyter installation. To remove the repository, you can delete the folder tcvx21_env and run jupyter kernelspec uninstall tcvx21.

To run tests and open Jupyter

Once you've installed via either option, you can activate the python environment with conda activate ./tcvx21_env. To deactivate, run conda deactivate.

Then, it is recommended to run the test suite with pytest which ensures that everything is installed and working correctly. If something fails, let us know in the issues. Note that this executes all of the analysis notebooks, so it might take a while to run.

Finally, run jupyter lab to open a Jupyter server in the TCV-X21 repository. Then, you can open any of the notebooks (.ipynb extension) by clicking in the side-bar.

A note on pinned dependencies

To ensure that the results are reproducible, the environment.yml file has pinned dependencies. However, if you want to use this software as a library, pinned dependencies are unnecessarily restrictive. You can remove the versions after the = sign in the environment.yml, but be warned that things might break.

You might also like...
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

This is the official repo for TransFill:  Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset.
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx]
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

An experimental technique for efficiently exploring neural architectures.
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

A simple but complete full-attention transformer with a set of promising experimental features from various papers
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Comments
  • Repair results

    Repair results

    It appears that the 3.results folder had not been updated with the outputs of the notebooks.

    I've rerun the notebooks and now have the latest results in the folder.

    opened by TBody 1
Releases(v1.0)
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

SparseInst 🚀 A simple framework for real-time instance segmentation, CVPR 2022 by Tianheng Cheng, Xinggang Wang†, Shaoyu Chen, Wenqiang Zhang, Qian Z

Hust Visual Learning Team 458 Jan 05, 2023
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17k Jan 02, 2023
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022