Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Overview

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

We consider how a user of a web service can build their own recommender system. Many recommender systems on the Internet are still unfair/undesirable for some users, in which case the users need to leave the service or unwillingly continue to use the system. Our proposed concept, private recommender systems, provides a way for the users to resolve this dilemma.

Paper: https://arxiv.org/abs/2105.12353

💿 Dependency

$ pip install -r requirements.txt
$ sudo apt install wget unzip

🗃️ Download and Preprocess Datasets

You can download and preprocess data by the following command. It may take time.

$ bash download.sh

hetrec.npy is the Last.fm dataset. home_and_kitchen.npy is the Amazon dataset. adult_*.npy and adult_*.npz are the Adult dataset.

🧪 Evaluation

$ python evaluate.py --data 100k --prov cosine --sensitive popularity
$ python evaluate.py --data 100k --prov bpr --sensitive popularity
$ python evaluate.py --data 100k --prov cosine --sensitive old
$ python evaluate.py --data 100k --prov bpr --sensitive old
$ python evaluate.py --data hetrec --prov bpr --sensitive popularity
$ python evaluate.py --data home --prov bpr --sensitive popularity
$ python evaluate_adult.py
  • 100k is the MovieLens 100k dataset. hetrec is the LastFM dataset. home is the Amazon Home and Kitchen dataset.
  • --prov specifys the algorithm of the service provider's recommender system.
  • --sensitive specifyies the sensitive attribute. old is available only for the MovieLens datasets.

These scripts compute the sums of recalls, NDCGs, least ratios, and entropies for all users. Be sure to divide these values by the number of users to obtain the average values.

When your environment supports multi-processing, run, for example, the following commands to speed up the computation (with background executions):

$ python evaluate.py --data 100k --prov cosine --sensitive popularity --split 7 --block 0
$ python evaluate.py --data 100k --prov cosine --sensitive popularity --split 7 --block 1
$ python evaluate.py --data 100k --prov cosine --sensitive popularity --split 7 --block 2
$ python evaluate.py --data 100k --prov cosine --sensitive popularity --split 7 --block 3
$ python evaluate.py --data 100k --prov cosine --sensitive popularity --split 7 --block 4
$ python evaluate.py --data 100k --prov cosine --sensitive popularity --split 7 --block 5
$ python evaluate.py --data 100k --prov cosine --sensitive popularity --split 7 --block 6
$ python summary.py 7

🖋️ Citation

@inproceedings{sato2022retrieving,
  author    = {Ryoma Sato},
  title     = {Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data?},
  booktitle = {Proceedings of the 2022 {SIAM} International Conference on Data Mining, {SDM}},
  year      = {2022},
}
Owner
joisino
joisino
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022