EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

Related tags

Deep LearningSciCap
Overview

SCICAP: Scientific Figures Dataset

This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu et. al, 2021)

SCICAP a large-scale figure caption dataset based on Computer Science arXiv papers published between 2010 and 2020. SCICAP contained 410k figures that focused on one of the dominent figure type - graphplot, extracted from over 290,000 papers.

How to Cite?

@inproceedings{hsu2021scicap,
  title={SciCap: Generating Captions for Scientific Figures},
  author={Hsu, Ting-Yao E. and Giles, C. Lee and Huang, Ting-Hao K.},
  booktitle={Findings of 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP 2021 Findings)},
  year={2021}
}

Download the Dataset

You can dowload the SCICAP dataset here: Download Link (18.15 GB)

Folder Structure

scicap_data.zip
├── SciCap-Caption-All                  #caption text for all figures
│	├── Train
│	├── Val
│	└── Test
├── SciCap-No-Subfig-Img                #image files for the figures without subfigures
│	├── Train
│	├── Val
│	└── Test
├── SciCap-Yes-Subfig-Img               #image files for the figures with subfigures
│	├── Train
│	├── Val
│	└── Test
├── arxiv-metadata-oai-snapshot.json    #arXiv paper's metadata (from arXiv dataset)
└── List-of-Files-for-Each-Experiments  #list of figure names used in each experiment 
    ├── Single-Sentence-Caption
    │   ├── No-Subfig
    │   │   ├── Train
    │	│   ├── Val
    │	│   └── Test
    │	└── Yes-Subfig
    │       ├── Train
    │       ├── Val
    │       └── Test
    ├── First-Sentence                  #Same as in Single-Sentence-Caption
    └── Caption-No-More-Than-100-Tokens #Same as in Single-Sentence-Caption

Number of Figures in Each Subset

Data Collection Does the figure have subfigures? Train Validate Test
First Sentence Yes 226,608 28,326 28,327
First Sentence No 106,834 13,354 13,355
Single-Sent Caption Yes 123,698 15,469 15,531
Single-Sent Caption No 75,494 9,242 9,459
Caption w/ <=100 words Yes 216,392 27,072 27,036
Caption w/ <=100 words No 105,687 13,215 13,226

JSON Data Format

Example Data Instance (Caption and Figure)

An actual JSON object from SCICAP:

{
  "contains-subfigure": true, 
  "Img-text": ["(b)", "s]", "[m", "fs", "et", "e", "of", "T", "im", "Attack", "duration", "[s]", "350", "300", "250", "200", "150", "100", "50", "0", "50", "100", "150", "200", "250", "300", "0", "(a)", "]", "[", "m", "fs", "et", "e", "of", "ta", "nc", "D", "is", "Attack", "duration", "[s]", "10000", "9000", "8000", "7000", "6000", "5000", "4000", "3000", "2000", "1000", "0", "50", "100", "150", "200", "250", "300", "0"], 
  "paper-ID": "1001.0025v1", 
  "figure-ID": "1001.0025v1-Figure2-1.png", 
  "figure-type": "Graph Plot", 
  "0-originally-extracted": "Figure 2: Impact of the replay attack, as a function of the spoofing attack duration. (a) Location offset or error: Distance between the attack-induced and the actual victim receiver position. (b) Time offset or error: Time difference between the attack-induced clock value and the actual time.", 
  "1-lowercase-and-token-and-remove-figure-index": {
    "caption": "impact of the replay attack , as a function of the spoofing attack duration . ( a ) location offset or error : distance between the attack-induced and the actual victim receiver position . ( b ) time offset or error : time difference between the attack-induced clock value and the actual time .", 
    "sentence": ["impact of the replay attack , as a function of the spoofing attack duration .", "( a ) location offset or error : distance between the attack-induced and the actual victim receiver position .", "( b ) time offset or error : time difference between the attack-induced clock value and the actual time ."], 
    "token": ["impact", "of", "the", "replay", "attack", ",", "as", "a", "function", "of", "the", "spoofing", "attack", "duration", ".", "(", "a", ")", "location", "offset", "or", "error", ":", "distance", "between", "the", "attack-induced", "and", "the", "actual", "victim", "receiver", "position", ".", "(", "b", ")", "time", "offset", "or", "error", ":", "time", "difference", "between", "the", "attack-induced", "clock", "value", "and", "the", "actual", "time", "."]
  }, 
  "2-normalized": {
    "2-1-basic-num": {
      "caption": "impact of the replay attack , as a function of the spoofing attack duration . ( a ) location offset or error : distance between the attack-induced and the actual victim receiver position . ( b ) time offset or error : time difference between the attack-induced clock value and the actual time .", 
      "sentence": ["impact of the replay attack , as a function of the spoofing attack duration .", "( a ) location offset or error : distance between the attack-induced and the actual victim receiver position .", "( b ) time offset or error : time difference between the attack-induced clock value and the actual time ."], 
      "token": ["impact", "of", "the", "replay", "attack", ",", "as", "a", "function", "of", "the", "spoofing", "attack", "duration", ".", "(", "a", ")", "location", "offset", "or", "error", ":", "distance", "between", "the", "attack-induced", "and", "the", "actual", "victim", "receiver", "position", ".", "(", "b", ")", "time", "offset", "or", "error", ":", "time", "difference", "between", "the", "attack-induced", "clock", "value", "and", "the", "actual", "time", "."]
      }, 
    "2-2-advanced-euqation-bracket": {
      "caption": "impact of the replay attack , as a function of the spoofing attack duration . BRACKET-TK location offset or error : distance between the attack-induced and the actual victim receiver position . BRACKET-TK time offset or error : time difference between the attack-induced clock value and the actual time .", 
      "sentence": ["impact of the replay attack , as a function of the spoofing attack duration .", "BRACKET-TK location offset or error : distance between the attack-induced and the actual victim receiver position .", "BRACKET-TK time offset or error : time difference between the attack-induced clock value and the actual time ."], 
      "tokens": ["impact", "of", "the", "replay", "attack", ",", "as", "a", "function", "of", "the", "spoofing", "attack", "duration", ".", "BRACKET-TK", "location", "offset", "or", "error", ":", "distance", "between", "the", "attack-induced", "and", "the", "actual", "victim", "receiver", "position", ".", "BRACKET-TK", "time", "offset", "or", "error", ":", "time", "difference", "between", "the", "attack-induced", "clock", "value", "and", "the", "actual", "time", "."]
      }
    }
  }


Corresponding Figure: 1001.0025v1-Figure2-1.png

JSON Scheme

  • contains-subfigure: boolean (check if contain subfigure)
  • paper-ID: the unique paper ID in the arXiv dataset
  • figure-ID: the extracted figure ID of paper (the index is not the same as the label in the caption)
  • figure-type: the figure type
  • 0-originally-extracted: original captions of figures
  • 1-lowercase-and-token-and-remove-figure-index: Removed figure index and the captions in lowercase
  • 2-normalized:
    • 2-1-basic-num: caption after replacing the number
    • 2-2-advanced-euqation-bracket: caption after replacing the equations and contents in the bracket
  • Img-text: texts extracted from the figure, such as the texts for labels, legends ... etc.

Within the caption content, we have three attributes:

  • caption: caption after each normalization
  • sentence: a list of segmented sentences
  • token: a list of tokenized words

Normalized Token

In the paper, we used [NUM], [BRACKET], [EQUATION], but we decided to use NUM-TK, BRACKET-TK, EQUAT-TK in the final data release to avoid the extra problems caused by "[]".

Token Description
NUM-TK Numbers (e.g., 0, -0.2, 3.44%, 1,000,000).
BRACKET-TK Text spans enclosed by any types of bracket pairs, including {}, [], and ().
EQUAT-TK Math equations identified using regular expressions.

Baseline Performance

To examine the feasibility and challenges of creating an image-captioning model for scientific figures, we established several baselines and tested them using SCICAP. The caption quality was measured by BLEU-4, using the test set of the corresponding data collection as a reference. We trained the models on each data collection with varying levels of data filtering and text normalization. Table 2 shows the results. We also designed three variations of the baseline models, Vision-only, Vision+Text, and Text-only. Table 3 shows the results.
























Data License

The arXiv dataset uses the CC0 1.0 Universal (CC0 1.0) Public Domain Dedication license, which grants permission to remix, remake, annotate, and publish the data.

Acknowledgements

We thank Chieh-Yang Huang, Hua Shen, and Chacha Chen for helping with the data annotation. We thank Chieh-Yang Huang for the feedback and strong technical support. We also thank the anonymous reviewers for their constructive feedback. This research was partially supported by the Seed Grant (2020) from the College of Information Sciences and Technology (IST), Pennsylvania State University.

Owner
Edward
PHD Student
Edward
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021
Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Qiushi Yang 2 Sep 29, 2022
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022