EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

Related tags

Deep LearningSciCap
Overview

SCICAP: Scientific Figures Dataset

This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu et. al, 2021)

SCICAP a large-scale figure caption dataset based on Computer Science arXiv papers published between 2010 and 2020. SCICAP contained 410k figures that focused on one of the dominent figure type - graphplot, extracted from over 290,000 papers.

How to Cite?

@inproceedings{hsu2021scicap,
  title={SciCap: Generating Captions for Scientific Figures},
  author={Hsu, Ting-Yao E. and Giles, C. Lee and Huang, Ting-Hao K.},
  booktitle={Findings of 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP 2021 Findings)},
  year={2021}
}

Download the Dataset

You can dowload the SCICAP dataset here: Download Link (18.15 GB)

Folder Structure

scicap_data.zip
├── SciCap-Caption-All                  #caption text for all figures
│	├── Train
│	├── Val
│	└── Test
├── SciCap-No-Subfig-Img                #image files for the figures without subfigures
│	├── Train
│	├── Val
│	└── Test
├── SciCap-Yes-Subfig-Img               #image files for the figures with subfigures
│	├── Train
│	├── Val
│	└── Test
├── arxiv-metadata-oai-snapshot.json    #arXiv paper's metadata (from arXiv dataset)
└── List-of-Files-for-Each-Experiments  #list of figure names used in each experiment 
    ├── Single-Sentence-Caption
    │   ├── No-Subfig
    │   │   ├── Train
    │	│   ├── Val
    │	│   └── Test
    │	└── Yes-Subfig
    │       ├── Train
    │       ├── Val
    │       └── Test
    ├── First-Sentence                  #Same as in Single-Sentence-Caption
    └── Caption-No-More-Than-100-Tokens #Same as in Single-Sentence-Caption

Number of Figures in Each Subset

Data Collection Does the figure have subfigures? Train Validate Test
First Sentence Yes 226,608 28,326 28,327
First Sentence No 106,834 13,354 13,355
Single-Sent Caption Yes 123,698 15,469 15,531
Single-Sent Caption No 75,494 9,242 9,459
Caption w/ <=100 words Yes 216,392 27,072 27,036
Caption w/ <=100 words No 105,687 13,215 13,226

JSON Data Format

Example Data Instance (Caption and Figure)

An actual JSON object from SCICAP:

{
  "contains-subfigure": true, 
  "Img-text": ["(b)", "s]", "[m", "fs", "et", "e", "of", "T", "im", "Attack", "duration", "[s]", "350", "300", "250", "200", "150", "100", "50", "0", "50", "100", "150", "200", "250", "300", "0", "(a)", "]", "[", "m", "fs", "et", "e", "of", "ta", "nc", "D", "is", "Attack", "duration", "[s]", "10000", "9000", "8000", "7000", "6000", "5000", "4000", "3000", "2000", "1000", "0", "50", "100", "150", "200", "250", "300", "0"], 
  "paper-ID": "1001.0025v1", 
  "figure-ID": "1001.0025v1-Figure2-1.png", 
  "figure-type": "Graph Plot", 
  "0-originally-extracted": "Figure 2: Impact of the replay attack, as a function of the spoofing attack duration. (a) Location offset or error: Distance between the attack-induced and the actual victim receiver position. (b) Time offset or error: Time difference between the attack-induced clock value and the actual time.", 
  "1-lowercase-and-token-and-remove-figure-index": {
    "caption": "impact of the replay attack , as a function of the spoofing attack duration . ( a ) location offset or error : distance between the attack-induced and the actual victim receiver position . ( b ) time offset or error : time difference between the attack-induced clock value and the actual time .", 
    "sentence": ["impact of the replay attack , as a function of the spoofing attack duration .", "( a ) location offset or error : distance between the attack-induced and the actual victim receiver position .", "( b ) time offset or error : time difference between the attack-induced clock value and the actual time ."], 
    "token": ["impact", "of", "the", "replay", "attack", ",", "as", "a", "function", "of", "the", "spoofing", "attack", "duration", ".", "(", "a", ")", "location", "offset", "or", "error", ":", "distance", "between", "the", "attack-induced", "and", "the", "actual", "victim", "receiver", "position", ".", "(", "b", ")", "time", "offset", "or", "error", ":", "time", "difference", "between", "the", "attack-induced", "clock", "value", "and", "the", "actual", "time", "."]
  }, 
  "2-normalized": {
    "2-1-basic-num": {
      "caption": "impact of the replay attack , as a function of the spoofing attack duration . ( a ) location offset or error : distance between the attack-induced and the actual victim receiver position . ( b ) time offset or error : time difference between the attack-induced clock value and the actual time .", 
      "sentence": ["impact of the replay attack , as a function of the spoofing attack duration .", "( a ) location offset or error : distance between the attack-induced and the actual victim receiver position .", "( b ) time offset or error : time difference between the attack-induced clock value and the actual time ."], 
      "token": ["impact", "of", "the", "replay", "attack", ",", "as", "a", "function", "of", "the", "spoofing", "attack", "duration", ".", "(", "a", ")", "location", "offset", "or", "error", ":", "distance", "between", "the", "attack-induced", "and", "the", "actual", "victim", "receiver", "position", ".", "(", "b", ")", "time", "offset", "or", "error", ":", "time", "difference", "between", "the", "attack-induced", "clock", "value", "and", "the", "actual", "time", "."]
      }, 
    "2-2-advanced-euqation-bracket": {
      "caption": "impact of the replay attack , as a function of the spoofing attack duration . BRACKET-TK location offset or error : distance between the attack-induced and the actual victim receiver position . BRACKET-TK time offset or error : time difference between the attack-induced clock value and the actual time .", 
      "sentence": ["impact of the replay attack , as a function of the spoofing attack duration .", "BRACKET-TK location offset or error : distance between the attack-induced and the actual victim receiver position .", "BRACKET-TK time offset or error : time difference between the attack-induced clock value and the actual time ."], 
      "tokens": ["impact", "of", "the", "replay", "attack", ",", "as", "a", "function", "of", "the", "spoofing", "attack", "duration", ".", "BRACKET-TK", "location", "offset", "or", "error", ":", "distance", "between", "the", "attack-induced", "and", "the", "actual", "victim", "receiver", "position", ".", "BRACKET-TK", "time", "offset", "or", "error", ":", "time", "difference", "between", "the", "attack-induced", "clock", "value", "and", "the", "actual", "time", "."]
      }
    }
  }


Corresponding Figure: 1001.0025v1-Figure2-1.png

JSON Scheme

  • contains-subfigure: boolean (check if contain subfigure)
  • paper-ID: the unique paper ID in the arXiv dataset
  • figure-ID: the extracted figure ID of paper (the index is not the same as the label in the caption)
  • figure-type: the figure type
  • 0-originally-extracted: original captions of figures
  • 1-lowercase-and-token-and-remove-figure-index: Removed figure index and the captions in lowercase
  • 2-normalized:
    • 2-1-basic-num: caption after replacing the number
    • 2-2-advanced-euqation-bracket: caption after replacing the equations and contents in the bracket
  • Img-text: texts extracted from the figure, such as the texts for labels, legends ... etc.

Within the caption content, we have three attributes:

  • caption: caption after each normalization
  • sentence: a list of segmented sentences
  • token: a list of tokenized words

Normalized Token

In the paper, we used [NUM], [BRACKET], [EQUATION], but we decided to use NUM-TK, BRACKET-TK, EQUAT-TK in the final data release to avoid the extra problems caused by "[]".

Token Description
NUM-TK Numbers (e.g., 0, -0.2, 3.44%, 1,000,000).
BRACKET-TK Text spans enclosed by any types of bracket pairs, including {}, [], and ().
EQUAT-TK Math equations identified using regular expressions.

Baseline Performance

To examine the feasibility and challenges of creating an image-captioning model for scientific figures, we established several baselines and tested them using SCICAP. The caption quality was measured by BLEU-4, using the test set of the corresponding data collection as a reference. We trained the models on each data collection with varying levels of data filtering and text normalization. Table 2 shows the results. We also designed three variations of the baseline models, Vision-only, Vision+Text, and Text-only. Table 3 shows the results.
























Data License

The arXiv dataset uses the CC0 1.0 Universal (CC0 1.0) Public Domain Dedication license, which grants permission to remix, remake, annotate, and publish the data.

Acknowledgements

We thank Chieh-Yang Huang, Hua Shen, and Chacha Chen for helping with the data annotation. We thank Chieh-Yang Huang for the feedback and strong technical support. We also thank the anonymous reviewers for their constructive feedback. This research was partially supported by the Seed Grant (2020) from the College of Information Sciences and Technology (IST), Pennsylvania State University.

Owner
Edward
PHD Student
Edward
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
一套完整的微博舆情分析流程代码,包括微博爬虫、LDA主题分析和情感分析。

已经将项目的关键文件上传,包含微博爬虫、LDA主题分析和情感分析三个部分。 1.微博爬虫 实现微博评论爬取和微博用户信息爬取,一天大概十万条。 2.LDA主题分析 实现文档主题抽取,包括数据清洗及分词、主题数的确定(主题一致性和困惑度)和最优主题模型的选择(暴力搜索)。 3.情感分析 实现评论文本的

182 Jan 02, 2023
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022