Simple ONNX operation generator. Simple Operation Generator for ONNX.

Overview

sog4onnx

Simple ONNX operation generator. Simple Operation Generator for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • Variable, Constant, Operation and Attribute can be generated externally.
  • Allow Opset to be specified externally.
  • No check for consistency of Operations within the tool, as new OPs are added frequently and the definitions of existing OPs change with each new version of ONNX's Opset.
  • Only one OP can be defined at a time, and the goal is to generate free ONNX graphs using a combination of snc4onnx, sne4onnx, snd4onnx and scs4onnx.
  • List of parameters that can be specified: https://github.com/onnx/onnx/blob/main/docs/Operators.md

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U sog4onnx

1-2. Docker

### docker pull
$ docker pull pinto0309/sog4onnx:latest

### docker build
$ docker build -t pinto0309/sog4onnx:latest .

### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/sog4onnx:latest
$ cd /workdir

2. CLI Usage

$ sog4onnx -h

usage: sog4onnx [-h]
  --op_type OP_TYPE
  --opset OPSET
  --op_name OP_NAME
  [--input_variables NAME TYPE VALUE]
  [--output_variables NAME TYPE VALUE]
  [--attributes NAME DTYPE VALUE]
  [--output_onnx_file_path OUTPUT_ONNX_FILE_PATH]
  [--non_verbose]

optional arguments:
  -h, --help
        show this help message and exit

  --op_type OP_TYPE
        ONNX OP type.
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

  --opset OPSET
        ONNX opset number.

  --op_name OP_NAME
        OP name.

  --input_variables NAME DTYPE VALUE
        input_variables can be specified multiple times.
        --input_variables variable_name numpy.dtype shape
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

        e.g.
        --input_variables i1 float32 [1,3,5,5] \
        --input_variables i2 int32 [1] \
        --input_variables i3 float64 [1,3,224,224]

  --output_variables NAME DTYPE VALUE
        output_variables can be specified multiple times.
        --output_variables variable_name numpy.dtype shape
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

        e.g.
        --output_variables o1 float32 [1,3,5,5] \
        --output_variables o2 int32 [1] \
        --output_variables o3 float64 [1,3,224,224]

  --attributes NAME DTYPE VALUE
        attributes can be specified multiple times.
        dtype is one of "float32" or "float64" or "int32" or "int64" or "str".
        --attributes name dtype value
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

        e.g.
        --attributes alpha float32 1.0 \
        --attributes beta float32 1.0 \
        --attributes transA int32 0 \
        --attributes transB int32 0

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
        Output onnx file path.
        If not specified, a file with the OP type name is generated.

        e.g. op_type="Gemm" -> Gemm.onnx

  --non_verbose
        Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from sog4onnx import generate
>>> help(generate)
Help on function generate in module sog4onnx.onnx_operation_generator:

generate(
  op_type: str,
  opset: int,
  op_name: str,
  input_variables: dict,
  output_variables: dict,
  attributes: Union[dict, NoneType] = None,
  output_onnx_file_path: Union[str, NoneType] = '',
  non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    op_type: str
        ONNX op type.
        See below for the types of OPs that can be specified.
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

        e.g. "Add", "Div", "Gemm", ...

    opset: int
        ONNX opset number.

        e.g. 11

    op_name: str
        OP name.

    input_variables: Optional[dict]
        Specify input variables for the OP to be generated.
        See below for the variables that can be specified.
        https://github.com/onnx/onnx/blob/main/docs/Operators.md
        {"input_var_name1": [numpy.dtype, shape], "input_var_name2": [dtype, shape], ...}

        e.g.
        input_variables = {
          "name1": [np.float32, [1,224,224,3]],
          "name2": [np.bool_, [0]],
          ...
        }

    output_variables: Optional[dict]
        Specify output variables for the OP to be generated.
        See below for the variables that can be specified.
        https://github.com/onnx/onnx/blob/main/docs/Operators.md
        {"output_var_name1": [numpy.dtype, shape], "output_var_name2": [dtype, shape], ...}

        e.g.
        output_variables = {
          "name1": [np.float32, [1,224,224,3]],
          "name2": [np.bool_, [0]],
          ...
        }

    attributes: Optional[dict]
        Specify output attributes for the OP to be generated.
        See below for the attributes that can be specified.
        When specifying Tensor format values, specify an array converted to np.ndarray.
        https://github.com/onnx/onnx/blob/main/docs/Operators.md
        {"attr_name1": value1, "attr_name2": value2, "attr_name3": value3, ...}

        e.g.
        attributes = {
          "alpha": 1.0,
          "beta": 1.0,
          "transA": 0,
          "transB": 0
        }
        Default: None

    output_onnx_file_path: Optional[str]
        Output of onnx file path.
        If not specified, no .onnx file is output.
        Default: ''

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    single_op_graph: onnx.ModelProto
        Single op onnx ModelProto

4. CLI Execution

$ sog4onnx \
--op_type Gemm \
--opset 1 \
--op_name gemm_custom1 \
--input_variables i1 float32 [1,2,3] \
--input_variables i2 float32 [1,1] \
--input_variables i3 int32 [0] \
--output_variables o1 float32 [1,2,3] \
--attributes alpha float32 1.0 \
--attributes beta float32 1.0 \
--attributes transA int32 0 \
--attributes transB int32 0

5. In-script Execution

import numpy as np
from sog4onnx import generate

single_op_graph = generate(
    op_type = 'Gemm',
    opset = 1,
    op_name = "gemm_custom1",
    input_variables = {
      "i1": [np.float32, [1,2,3]],
      "i2": [np.float32, [1,1]],
      "i3": [np.int32, [0]],
    },
    output_variables = {
      "o1": [np.float32, [1,2,3]],
    },
    attributes = {
      "alpha": 1.0,
      "beta": 1.0,
      "broadcast": 0,
      "transA": 0,
      "transB": 0,
    },
    non_verbose = True,
)

6. Sample

6-1. opset=1, Gemm

$ sog4onnx \
--op_type Gemm \
--opset 1 \
--op_name gemm_custom1 \
--input_variables i1 float32 [1,2,3] \
--input_variables i2 float32 [1,1] \
--input_variables i3 int32 [0] \
--output_variables o1 float32 [1,2,3] \
--attributes alpha float32 1.0 \
--attributes beta float32 1.0 \
--attributes transA int32 0 \
--attributes transB int32 0
--non_verbose

image image

6-2. opset=11, Add

$ sog4onnx \
--op_type Add \
--opset 11 \
--op_name add_custom1 \
--input_variables i1 float32 [1,2,3] \
--input_variables i2 float32 [1,2,3] \
--output_variables o1 float32 [1,2,3] \
--non_verbose

image image

6-3. opset=11, NonMaxSuppression

$ sog4onnx \
--op_type NonMaxSuppression \
--opset 11 \
--op_name nms_custom1 \
--input_variables boxes float32 [1,6,4] \
--input_variables scores float32 [1,1,6] \
--input_variables max_output_boxes_per_class int64 [1] \
--input_variables iou_threshold float32 [1] \
--input_variables score_threshold float32 [1] \
--output_variables selected_indices int64 [3,3] \
--attributes center_point_box int64 1

image image

6-4. opset=11, Constant

$ sog4onnx \
--op_type Constant \
--opset 11 \
--op_name const_custom1 \
--output_variables boxes float32 [1,6,4] \
--attributes value float32 \
[[\
[0.5,0.5,1.0,1.0],\
[0.5,0.6,1.0,1.0],\
[0.5,0.4,1.0,1.0],\
[0.5,10.5,1.0,1.0],\
[0.5,10.6,1.0,1.0],\
[0.5,100.5,1.0,1.0]\
]]

image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/Operators.md
  2. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  3. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  4. https://github.com/PINTO0309/sne4onnx
  5. https://github.com/PINTO0309/snd4onnx
  6. https://github.com/PINTO0309/snc4onnx
  7. https://github.com/PINTO0309/scs4onnx
  8. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

You might also like...
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Simple node deletion tool for onnx.
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

PyTorch ,ONNX and TensorRT implementation of YOLOv4
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

YOLOv5 in PyTorch > ONNX > CoreML > TFLite
YOLOv5 in PyTorch ONNX CoreML TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. All code and models are under active development, and are subject to modification or deletion without notice.

Comments
  • Small fixes to README

    Small fixes to README

    Thank you for the tool. There are small fixes needed in the README: the attributes of one example missing the type, and the numpy import in another one.

    Otherwise, it works perfectly.

    opened by ibaiGorordo 1
Releases(1.0.15)
  • 1.0.15(Nov 20, 2022)

    • Fixed a bug where Constant and ConstantOfShape opsets were not set

    Full Changelog: https://github.com/PINTO0309/sog4onnx/compare/1.0.14...1.0.15

    Source code(tar.gz)
    Source code(zip)
  • 1.0.14(Sep 8, 2022)

    • Add short form parameter
      $ sog4onnx -h
      
      usage: sog4onnx [-h]
        --ot OP_TYPE
        --os OPSET
        --on OP_NAME
        [-iv NAME TYPE VALUE]
        [-ov NAME TYPE VALUE]
        [-a NAME DTYPE VALUE]
        [-of OUTPUT_ONNX_FILE_PATH]
        [-n]
      
      optional arguments:
        -h, --help
          show this help message and exit
      
        -ot OP_TYPE, --op_type OP_TYPE
          ONNX OP type.
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
        -os OPSET, --opset OPSET
          ONNX opset number.
      
        -on OP_NAME, --op_name OP_NAME
          OP name.
      
        -iv INPUT_VARIABLES INPUT_VARIABLES INPUT_VARIABLES, --input_variables INPUT_VARIABLES INPUT_VARIABLES INPUT_VARIABLES
          input_variables can be specified multiple times.
          --input_variables variable_name numpy.dtype shape
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
          e.g.
          --input_variables i1 float32 [1,3,5,5] \
          --input_variables i2 int32 [1] \
          --input_variables i3 float64 [1,3,224,224]
      
        -ov OUTPUT_VARIABLES OUTPUT_VARIABLES OUTPUT_VARIABLES, --output_variables OUTPUT_VARIABLES OUTPUT_VARIABLES OUTPUT_VARIABLES
          output_variables can be specified multiple times.
          --output_variables variable_name numpy.dtype shape
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
          e.g.
          --output_variables o1 float32 [1,3,5,5] \
          --output_variables o2 int32 [1] \
          --output_variables o3 float64 [1,3,224,224]
      
        -a ATTRIBUTES ATTRIBUTES ATTRIBUTES, --attributes ATTRIBUTES ATTRIBUTES ATTRIBUTES
          attributes can be specified multiple times.
          dtype is one of "float32" or "float64" or "int32" or "int64" or "str".
          --attributes name dtype value
          https://github.com/onnx/onnx/blob/main/docs/Operators.md
      
          e.g.
          --attributes alpha float32 1.0 \
          --attributes beta float32 1.0 \
          --attributes transA int32 0 \
          --attributes transB int32 0
      
        -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
          Output onnx file path.
          If not specified, a file with the OP type name is generated.
      
          e.g. op_type="Gemm" -> Gemm.onnx
      
        -n, --non_verbose
          Do not show all information logs. Only error logs are displayed.
      
    Source code(tar.gz)
    Source code(zip)
  • 1.0.13(Jun 10, 2022)

  • 1.0.12(Jun 7, 2022)

  • 1.0.11(May 25, 2022)

  • 1.0.10(May 15, 2022)

  • 1.0.9(Apr 26, 2022)

    • Added op_name as an input parameter, allowing OPs to be named.
      • CLI
        sog4onnx [-h]
          --op_type OP_TYPE
          --opset OPSET
          --op_name OP_NAME
          [--input_variables NAME TYPE VALUE]
          [--output_variables NAME TYPE VALUE]
          [--attributes NAME DTYPE VALUE]
          [--output_onnx_file_path OUTPUT_ONNX_FILE_PATH]
          [--non_verbose]
        
      • In-script
        generate(
          op_type: str,
          opset: int,
          op_name: str,
          input_variables: dict,
          output_variables: dict,
          attributes: Union[dict, NoneType] = None,
          output_onnx_file_path: Union[str, NoneType] = '',
          non_verbose: Union[bool, NoneType] = False
        ) -> onnx.onnx_ml_pb2.ModelProto
        
    Source code(tar.gz)
    Source code(zip)
  • 1.0.8(Apr 15, 2022)

  • 1.0.7(Apr 14, 2022)

  • 1.0.6(Apr 14, 2022)

  • 1.0.5(Apr 13, 2022)

  • 1.0.4(Apr 13, 2022)

  • 1.0.3(Apr 12, 2022)

  • 1.0.2(Apr 12, 2022)

  • 1.0.1(Apr 12, 2022)

  • 1.0.0(Apr 12, 2022)

  • 0.0.2(Apr 12, 2022)

  • 0.0.1(Apr 12, 2022)

Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Riemannian Convex Potential Maps

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited b

Facebook Research 61 Nov 28, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
Testability-Aware Low Power Controller Design with Evolutionary Learning, ITC2021

Testability-Aware Low Power Controller Design with Evolutionary Learning This repo contains the source code of Testability-Aware Low Power Controller

Lee Man 1 Dec 26, 2021
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
A fast MoE impl for PyTorch

An easy-to-use and efficient system to support the Mixture of Experts (MoE) model for PyTorch.

Rick Ho 873 Jan 09, 2023
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
Official repository of ICCV21 paper "Viewpoint Invariant Dense Matching for Visual Geolocalization"

Viewpoint Invariant Dense Matching for Visual Geolocalization: PyTorch implementation This is the implementation of the ICCV21 paper: G Berton, C. Mas

Gabriele Berton 44 Jan 03, 2023