Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

Overview

mtomo

Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. And, Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

1. Environment

  1. Docker 20.10.5, build 55c4c88

2. Model optimization environment to be built

  1. Ubuntu 20.04 x86_64
  2. CUDA 11.2
  3. cuDNN 8.1
  4. TensorFlow v2.5.0-rc1 (MediaPipe Custom OP, FlexDelegate, XNNPACK enabled)
  5. tflite_runtime v2.5.0-rc1 (MediaPipe Custom OP, FlexDelegate, XNNPACK enabled)
  6. edgetpu-compiler
  7. flatc 1.12.0
  8. TensorRT cuda11.1-trt7.2.3.4-ga-20210226
  9. PyTorch 1.8.1+cu112
  10. TorchVision 0.9.1+cu112
  11. TorchAudio 0.8.1
  12. OpenVINO 2021.3.394
  13. tensorflowjs
  14. coremltools
  15. onnx
  16. tf2onnx
  17. tensorflow-datasets
  18. openvino2tensorflow
  19. tflite2tensorflow
  20. onnxruntime
  21. onnx-simplifier
  22. MXNet
  23. gdown
  24. OpenCV 4.5.2-openvino
  25. Intel-Media-SDK
  26. Intel iHD GPU (iGPU) support

3. Usage

3-1. Docker Hub

https://hub.docker.com/repository/docker/pinto0309/mtomo/tags?page=1&ordering=last_updated

$ xhost +local: && \
  docker run -it --rm \
    --gpus all \
    -v `pwd`:/home/user/workdir \
    -v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
    --device /dev/video0:/dev/video0:mwr \
    --net=host \
    -e LIBVA_DRIVER_NAME=iHD \
    -e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
    -e DISPLAY=$DISPLAY \
    --privileged \
    pinto0309/mtomo:ubuntu2004_tf2.5.0-rc1_torch1.8.1_openvino2021.3.394

3-2. Docker Build

$ git clone https://github.com/PINTO0309/mtomo.git && cd mtomo
$ docker build -t {IMAGE_NAME}:{TAG} .

3-3. Docker Run

$ xhost +local: && \
  docker run -it --rm \
    --gpus all \
    -v `pwd`:/home/user/workdir \
    -v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
    --device /dev/video0:/dev/video0:mwr \
    --net=host \
    -e LIBVA_DRIVER_NAME=iHD \
    -e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
    -e DISPLAY=$DISPLAY \
    --privileged \
    {IMAGE_NAME}:{TAG}

4. Reference articles

  1. openvino2tensorflow
  2. tflite2tensorflow
  3. tensorflow-onnx (a.k.a tf2onnx)
  4. tensorflowjs
  5. coremltools
  6. OpenVINO
  7. onnx
  8. onnx-simplifier
  9. TensorFLow
  10. PyTorch
  11. flatbuffers (a.k.a flatc)
  12. TensorRT
  13. Intel-Media-SDK/MediaSDK - Running on GPU under docker
  14. Intel-Media-SDK/MediaSDK - Intel media stack on Ubuntu
Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022