Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

Overview

mtomo

Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. And, Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

1. Environment

  1. Docker 20.10.5, build 55c4c88

2. Model optimization environment to be built

  1. Ubuntu 20.04 x86_64
  2. CUDA 11.2
  3. cuDNN 8.1
  4. TensorFlow v2.5.0-rc1 (MediaPipe Custom OP, FlexDelegate, XNNPACK enabled)
  5. tflite_runtime v2.5.0-rc1 (MediaPipe Custom OP, FlexDelegate, XNNPACK enabled)
  6. edgetpu-compiler
  7. flatc 1.12.0
  8. TensorRT cuda11.1-trt7.2.3.4-ga-20210226
  9. PyTorch 1.8.1+cu112
  10. TorchVision 0.9.1+cu112
  11. TorchAudio 0.8.1
  12. OpenVINO 2021.3.394
  13. tensorflowjs
  14. coremltools
  15. onnx
  16. tf2onnx
  17. tensorflow-datasets
  18. openvino2tensorflow
  19. tflite2tensorflow
  20. onnxruntime
  21. onnx-simplifier
  22. MXNet
  23. gdown
  24. OpenCV 4.5.2-openvino
  25. Intel-Media-SDK
  26. Intel iHD GPU (iGPU) support

3. Usage

3-1. Docker Hub

https://hub.docker.com/repository/docker/pinto0309/mtomo/tags?page=1&ordering=last_updated

$ xhost +local: && \
  docker run -it --rm \
    --gpus all \
    -v `pwd`:/home/user/workdir \
    -v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
    --device /dev/video0:/dev/video0:mwr \
    --net=host \
    -e LIBVA_DRIVER_NAME=iHD \
    -e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
    -e DISPLAY=$DISPLAY \
    --privileged \
    pinto0309/mtomo:ubuntu2004_tf2.5.0-rc1_torch1.8.1_openvino2021.3.394

3-2. Docker Build

$ git clone https://github.com/PINTO0309/mtomo.git && cd mtomo
$ docker build -t {IMAGE_NAME}:{TAG} .

3-3. Docker Run

$ xhost +local: && \
  docker run -it --rm \
    --gpus all \
    -v `pwd`:/home/user/workdir \
    -v /tmp/.X11-unix/:/tmp/.X11-unix:rw \
    --device /dev/video0:/dev/video0:mwr \
    --net=host \
    -e LIBVA_DRIVER_NAME=iHD \
    -e XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR \
    -e DISPLAY=$DISPLAY \
    --privileged \
    {IMAGE_NAME}:{TAG}

4. Reference articles

  1. openvino2tensorflow
  2. tflite2tensorflow
  3. tensorflow-onnx (a.k.a tf2onnx)
  4. tensorflowjs
  5. coremltools
  6. OpenVINO
  7. onnx
  8. onnx-simplifier
  9. TensorFLow
  10. PyTorch
  11. flatbuffers (a.k.a flatc)
  12. TensorRT
  13. Intel-Media-SDK/MediaSDK - Running on GPU under docker
  14. Intel-Media-SDK/MediaSDK - Intel media stack on Ubuntu
Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"

Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo

Jeya Maria Jose 615 Dec 25, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C 会议)The 33rd IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

金伟强 -上海大学人工智能小渣渣~ 5 Mar 07, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022