Unofficial Pytorch Implementation of WaveGrad2

Overview

WaveGrad 2 — Unofficial PyTorch Implementation

WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis
Unofficial PyTorch+Lightning Implementation of Chen et al.(JHU, Google Brain), WaveGrad2.
Audio Samples: https://mindslab-ai.github.io/wavegrad2/

TODO

  • More training for WaveGrad-Base setup
  • Checkpoint release
  • WaveGrad-Large Decoder
  • Inference by reduced sampling steps

Requirements

Datasets

The supported datasets are

  • LJSpeech: a single-speaker English dataset consists of 13100 short audio clips of a female speaker reading passages from 7 non-fiction books, approximately 24 hours in total.
  • AISHELL-3: a Mandarin TTS dataset with 218 male and female speakers, roughly 85 hours in total.
  • etc.

We take LJSpeech as an example hereafter.

Preprocessing

  • Adjust preprocess.yaml, especially path section.
path:
  corpus_path: '/DATA1/LJSpeech-1.1' # LJSpeech corpus path
  lexicon_path: 'lexicon/librispeech-lexicon.txt'
  raw_path: './raw_data/LJSpeech'
  preprocessed_path: './preprocessed_data/LJSpeech'
  • run prepare_align.py for some preparations.
python prepare_align.py -c preprocess.yaml
  • Montreal Forced Aligner (MFA) is used to obtain the alignments between the utterances and the phoneme sequences. Alignments for the LJSpeech and AISHELL-3 datasets are provided here. You have to unzip the files in preprocessed_data/LJSpeech/TextGrid/.

  • After that, run preprocess.py.

python preprocess.py -c preprocess.yaml
  • Alternately, you can align the corpus by yourself.
  • Download the official MFA package and run it to align the corpus.
./montreal-forced-aligner/bin/mfa_align raw_data/LJSpeech/ lexicon/librispeech-lexicon.txt english preprocessed_data/LJSpeech

or

./montreal-forced-aligner/bin/mfa_train_and_align raw_data/LJSpeech/ lexicon/librispeech-lexicon.txt preprocessed_data/LJSpeech
  • And then run preprocess.py.
python preprocess.py -c preprocess.yaml

Training

  • Adjust hparameter.yaml, especially train section.
train:
  batch_size: 12 # Dependent on GPU memory size
  adam:
    lr: 3e-4
    weight_decay: 1e-6
  decay:
    rate: 0.05
    start: 25000
    end: 100000
  num_workers: 16 # Dependent on CPU cores
  gpus: 2 # number of GPUs
  loss_rate:
    dur: 1.0
  • If you want to train with other dataset, adjust data section in hparameter.yaml
data:
  lang: 'eng'
  text_cleaners: ['english_cleaners'] # korean_cleaners, english_cleaners, chinese_cleaners
  speakers: ['LJSpeech']
  train_dir: 'preprocessed_data/LJSpeech'
  train_meta: 'train.txt'  # relative path of metadata file from train_dir
  val_dir: 'preprocessed_data/LJSpeech'
  val_meta: 'val.txt'  # relative path of metadata file from val_dir'
  lexicon_path: 'lexicon/librispeech-lexicon.txt'
  • run trainer.py
python trainer.py
  • If you want to resume training from checkpoint, check parser.
parser = argparse.ArgumentParser()
parser.add_argument('-r', '--resume_from', type =int,\
	required = False, help = "Resume Checkpoint epoch number")
parser.add_argument('-s', '--restart', action = "store_true",\
	required = False, help = "Significant change occured, use this")
parser.add_argument('-e', '--ema', action = "store_true",
	required = False, help = "Start from ema checkpoint")
args = parser.parse_args()
  • During training, tensorboard logger is logging loss, spectrogram and audio.
tensorboard --logdir=./tensorboard --bind_all

Inference

  • run inference.py
python inference.py -c <checkpoint_path> --text <'text'>

Checkpoint file will be released!

Note

Since this repo is unofficial implementation and WaveGrad2 paper do not provide several details, a slight differences between paper could exist.
We listed modifications or arbitrary setups

  • Normal LSTM without ZoneOut is applied for encoder.
  • g2p_en is applied instead of Google's unknown G2P.
  • Trained with LJSpeech datasdet instead of Google's proprietary dataset.
    • Due to dataset replacement, output audio's sampling rate becomes 22.05kHz instead of 24kHz.
  • MT + SpecAug are not implemented.
  • hyperparameters
    • train.batch_size: 12 for 2 A100 (40GB) GPUs
    • train.adam.lr: 3e-4 and train.adam.weight_decay: 1e-6
    • train.decay learning rate decay is applied during training
    • train.loss_rate: 1 as total_loss = 1 * L1_loss + 1 * duration_loss
    • ddpm.ddpm_noise_schedule: torch.linspace(1e-6, 0.01, hparams.ddpm.max_step)
    • encoder.channel is reduced to 512 from 1024 or 2048
  • Current sample page only contains samples from WaveGrad-Base decoder.
  • TODO things.

Tree

.
├── Dockerfile
├── README.md
├── dataloader.py
├── docs
│   ├── spec.png
│   ├── tb.png
│   └── tblogger.png
├── hparameter.yaml
├── inference.py
├── lexicon
│   ├── librispeech-lexicon.txt
│   └── pinyin-lexicon-r.txt
├── lightning_model.py
├── model
│   ├── base.py
│   ├── downsampling.py
│   ├── encoder.py
│   ├── gaussian_upsampling.py
│   ├── interpolation.py
│   ├── layers.py
│   ├── linear_modulation.py
│   ├── nn.py
│   ├── resampling.py
│   ├── upsampling.py
│   └── window.py
├── prepare_align.py
├── preprocess.py
├── preprocess.yaml
├── preprocessor
│   ├── ljspeech.py
│   └── preprocessor.py
├── text
│   ├── __init__.py
│   ├── cleaners.py
│   ├── cmudict.py
│   ├── numbers.py
│   └── symbols.py
├── trainer.py
├── utils
│   ├── mel.py
│   ├── stft.py
│   ├── tblogger.py
│   └── utils.py
└── wavegrad2_tester.ipynb

Author

This code is implemented by

Special thanks to

References

This implementation uses code from following repositories:

The webpage for the audio samples uses a template from:

The audio samples on our webpage(TBD) are partially derived from:

  • LJSpeech: a single-speaker English dataset consists of 13100 short audio clips of a female speaker reading passages from 7 non-fiction books, approximately 24 hours in total.
  • WaveGrad2 Official Github.io
Owner
MINDs Lab
MINDsLab provides AI platform and various AI engines based on deep machine learning.
MINDs Lab
BMW TechOffice MUNICH 148 Dec 21, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection".

A2S-USOD Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection". Code will be released upon

15 Dec 16, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022