Unofficial Pytorch Implementation of WaveGrad2

Overview

WaveGrad 2 — Unofficial PyTorch Implementation

WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis
Unofficial PyTorch+Lightning Implementation of Chen et al.(JHU, Google Brain), WaveGrad2.
Audio Samples: https://mindslab-ai.github.io/wavegrad2/

TODO

  • More training for WaveGrad-Base setup
  • Checkpoint release
  • WaveGrad-Large Decoder
  • Inference by reduced sampling steps

Requirements

Datasets

The supported datasets are

  • LJSpeech: a single-speaker English dataset consists of 13100 short audio clips of a female speaker reading passages from 7 non-fiction books, approximately 24 hours in total.
  • AISHELL-3: a Mandarin TTS dataset with 218 male and female speakers, roughly 85 hours in total.
  • etc.

We take LJSpeech as an example hereafter.

Preprocessing

  • Adjust preprocess.yaml, especially path section.
path:
  corpus_path: '/DATA1/LJSpeech-1.1' # LJSpeech corpus path
  lexicon_path: 'lexicon/librispeech-lexicon.txt'
  raw_path: './raw_data/LJSpeech'
  preprocessed_path: './preprocessed_data/LJSpeech'
  • run prepare_align.py for some preparations.
python prepare_align.py -c preprocess.yaml
  • Montreal Forced Aligner (MFA) is used to obtain the alignments between the utterances and the phoneme sequences. Alignments for the LJSpeech and AISHELL-3 datasets are provided here. You have to unzip the files in preprocessed_data/LJSpeech/TextGrid/.

  • After that, run preprocess.py.

python preprocess.py -c preprocess.yaml
  • Alternately, you can align the corpus by yourself.
  • Download the official MFA package and run it to align the corpus.
./montreal-forced-aligner/bin/mfa_align raw_data/LJSpeech/ lexicon/librispeech-lexicon.txt english preprocessed_data/LJSpeech

or

./montreal-forced-aligner/bin/mfa_train_and_align raw_data/LJSpeech/ lexicon/librispeech-lexicon.txt preprocessed_data/LJSpeech
  • And then run preprocess.py.
python preprocess.py -c preprocess.yaml

Training

  • Adjust hparameter.yaml, especially train section.
train:
  batch_size: 12 # Dependent on GPU memory size
  adam:
    lr: 3e-4
    weight_decay: 1e-6
  decay:
    rate: 0.05
    start: 25000
    end: 100000
  num_workers: 16 # Dependent on CPU cores
  gpus: 2 # number of GPUs
  loss_rate:
    dur: 1.0
  • If you want to train with other dataset, adjust data section in hparameter.yaml
data:
  lang: 'eng'
  text_cleaners: ['english_cleaners'] # korean_cleaners, english_cleaners, chinese_cleaners
  speakers: ['LJSpeech']
  train_dir: 'preprocessed_data/LJSpeech'
  train_meta: 'train.txt'  # relative path of metadata file from train_dir
  val_dir: 'preprocessed_data/LJSpeech'
  val_meta: 'val.txt'  # relative path of metadata file from val_dir'
  lexicon_path: 'lexicon/librispeech-lexicon.txt'
  • run trainer.py
python trainer.py
  • If you want to resume training from checkpoint, check parser.
parser = argparse.ArgumentParser()
parser.add_argument('-r', '--resume_from', type =int,\
	required = False, help = "Resume Checkpoint epoch number")
parser.add_argument('-s', '--restart', action = "store_true",\
	required = False, help = "Significant change occured, use this")
parser.add_argument('-e', '--ema', action = "store_true",
	required = False, help = "Start from ema checkpoint")
args = parser.parse_args()
  • During training, tensorboard logger is logging loss, spectrogram and audio.
tensorboard --logdir=./tensorboard --bind_all

Inference

  • run inference.py
python inference.py -c <checkpoint_path> --text <'text'>

Checkpoint file will be released!

Note

Since this repo is unofficial implementation and WaveGrad2 paper do not provide several details, a slight differences between paper could exist.
We listed modifications or arbitrary setups

  • Normal LSTM without ZoneOut is applied for encoder.
  • g2p_en is applied instead of Google's unknown G2P.
  • Trained with LJSpeech datasdet instead of Google's proprietary dataset.
    • Due to dataset replacement, output audio's sampling rate becomes 22.05kHz instead of 24kHz.
  • MT + SpecAug are not implemented.
  • hyperparameters
    • train.batch_size: 12 for 2 A100 (40GB) GPUs
    • train.adam.lr: 3e-4 and train.adam.weight_decay: 1e-6
    • train.decay learning rate decay is applied during training
    • train.loss_rate: 1 as total_loss = 1 * L1_loss + 1 * duration_loss
    • ddpm.ddpm_noise_schedule: torch.linspace(1e-6, 0.01, hparams.ddpm.max_step)
    • encoder.channel is reduced to 512 from 1024 or 2048
  • Current sample page only contains samples from WaveGrad-Base decoder.
  • TODO things.

Tree

.
├── Dockerfile
├── README.md
├── dataloader.py
├── docs
│   ├── spec.png
│   ├── tb.png
│   └── tblogger.png
├── hparameter.yaml
├── inference.py
├── lexicon
│   ├── librispeech-lexicon.txt
│   └── pinyin-lexicon-r.txt
├── lightning_model.py
├── model
│   ├── base.py
│   ├── downsampling.py
│   ├── encoder.py
│   ├── gaussian_upsampling.py
│   ├── interpolation.py
│   ├── layers.py
│   ├── linear_modulation.py
│   ├── nn.py
│   ├── resampling.py
│   ├── upsampling.py
│   └── window.py
├── prepare_align.py
├── preprocess.py
├── preprocess.yaml
├── preprocessor
│   ├── ljspeech.py
│   └── preprocessor.py
├── text
│   ├── __init__.py
│   ├── cleaners.py
│   ├── cmudict.py
│   ├── numbers.py
│   └── symbols.py
├── trainer.py
├── utils
│   ├── mel.py
│   ├── stft.py
│   ├── tblogger.py
│   └── utils.py
└── wavegrad2_tester.ipynb

Author

This code is implemented by

Special thanks to

References

This implementation uses code from following repositories:

The webpage for the audio samples uses a template from:

The audio samples on our webpage(TBD) are partially derived from:

  • LJSpeech: a single-speaker English dataset consists of 13100 short audio clips of a female speaker reading passages from 7 non-fiction books, approximately 24 hours in total.
  • WaveGrad2 Official Github.io
Owner
MINDs Lab
MINDsLab provides AI platform and various AI engines based on deep machine learning.
MINDs Lab
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Junjie Hu 13 Dec 10, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022