The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

Related tags

Deep LearningMOTIF
Overview

MOTIF Dataset

The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled with ground truth confidence. Family labels were obtained by surveying thousands of open-source threat reports published by 14 major cybersecurity organizations between Jan. 1st, 2016 Jan. 1st, 2021. The dataset also provides a comprehensive alias mapping for each family and EMBER raw features for each file.

Further information about the MOTIF dataset is provided in our paper.

If you use the provided data or code, please make sure to cite our paper:

@misc{joyce2021motif,
      title={MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels},
      author={Robert J. Joyce and Dev Amlani and Charles Nicholas and Edward Raff},
      year={2021},
      eprint={2111.15031},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Downloading the Dataset

Due to the size of the dataset, you must use Git LFS in order to clone the repository. Installation instructions for Git LFS are linked here. On Debian-based systems, the Git LFS package can be installed using:

sudo apt-get install git-lfs

Once Git LFS is installed, you can clone this repository using:

git lfs clone https://github.com/boozallen/MOTIF.git

Dataset Contents

The main dataset is located in dataset/ and contains the following files:

motif_dataset.jsonl

Each line of motif_dataset.jsonl is a .json object with the following entries:

Name Description
md5 MD5 hash of malware sample
sha1 SHA-1 hash of malware sample
sha256 SHA-256 hash of malware sample
reported_hash Hash of malware sample provided in report
reported_family Normalized family name provided in report
aliases List of known aliases for family
label Unique id for malware family (for ML purposes)
report_source Name of organization that published report
report_date Date report was published
report_url URL of report
report_ioc_url URL to report appendix (if any)
appeared Year and month malware sample was first seen

Each .json object also contains EMBER raw features (version 2) for the file:

Name Description
histogram EMBER histogram
byteentropy EMBER byte histogram
strings EMBER strings metadata
general EMBER general file metadata
header EMBER PE header metadata
section EMBER PE section metadata
imports EMBER imports metadata
exports EMBER exports metadata
datadirectories EMBER data directories metadata

motif_families.csv

This file contains an alias mapping for each of the 454 malware families in the MOTIF dataset. It also contains a succinct description of the family and the threat group or campaign that the family is attributed to (if any).

Column Description
Aliases List of known aliases for family
Description Brief sentence describing capabilities of malware family
Attribution (If any) Name of threat actor malware/campaign is attributed to

motif_reports.csv

This file provides information gathered from our original survey of open-source threat reports. We identified 4,369 malware hashes with 595 distinct reported family names during the survey, but we were unable to obtain some of the files and we restricted the MOTIF dataset to only files in the PE file format. The reported hash, family, source, date, URL, and IOC URL of any malware samples which did not make it into the final MOTIF dataset are located here.

MOTIF.7z

The disarmed malware samples are provided in this 1.47GB encrypted .7z file, which can be unzipped using the following password:

i_assume_all_risk_opening_malware

Each file is named in the format MOTIF_MD5, with MD5 indicating the file's hash prior to when it was disarmed.

X_train.dat and y_train.dat

EMBERv2 feature vectors and labels are provided in X_train.dat and y_train.dat, respectively. Feature vectors were computed using LIEF v0.9.0. These files are named for compatibility with the EMBER read_vectorized_features() function. MOTIF is not split into a training or test set, and X_train.dat and y_train.dat contain feature vectors and labels for the entire dataset.

Benchmark Models

We provide code for training the ML models described in our paper, located in benchmarks/. To support these models, code for modified versions of MalConv2 is included in the MalConv2/ directory.

Requirements:

Packages required for training the ML models can be installed using the following commands:

pip3 install -r requirements.txt
python3 setup.py install

Training the LightGBM or outlier detection models also requires EMBER:

pip3 install git+https://github.com/elastic/ember.git

Training the models:

The LightGBM model can be trained using the following command, where /path/to/MOTIF/dataset/ indicates the path to the dataset/ directory.

python3 lgbm.py /path/to/MOTIF/dataset/

The MalConv2 model can be trained using the following command, where /path/to/MOTIF/MOTIF_defanged/ indicates the path to the unzipped folder containing the disarmed malware samples:

python3 malconv.py /path/to/MOTIF/MOTIF_defanged/ /path/to/MOTIF/dataset/motif_dataset.jsonl

The three outlier detection models can be trained using the following command:

python3 outliers.py /path/to/MOTIF/dataset/

Proper Use of Data

Use of this dataset must follow the provided terms of licensing. We intend this dataset to be used for research purposes and have taken measures to prevent abuse by attackers. All files are prevented from running using the same technique as the SOREL dataset. We refer to their statement regarding safety and abuse of the data.

The malware we’re releasing is “disarmed” so that it will not execute. This means it would take knowledge, skill, and time to reconstitute the samples and get them to actually run. That said, we recognize that there is at least some possibility that a skilled attacker could learn techniques from these samples or use samples from the dataset to assemble attack tools to use as part of their malicious activities. However, in reality, there are already many other sources attackers could leverage to gain access to malware information and samples that are easier, faster and more cost effective to use. In other words, this disarmed sample set will have much more value to researchers looking to improve and develop their independent defenses than it will have to attackers.

Owner
Booz Allen Hamilton
The official GitHub organization of Booz Allen Hamilton
Booz Allen Hamilton
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022