The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

Related tags

Deep LearningMOTIF
Overview

MOTIF Dataset

The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled with ground truth confidence. Family labels were obtained by surveying thousands of open-source threat reports published by 14 major cybersecurity organizations between Jan. 1st, 2016 Jan. 1st, 2021. The dataset also provides a comprehensive alias mapping for each family and EMBER raw features for each file.

Further information about the MOTIF dataset is provided in our paper.

If you use the provided data or code, please make sure to cite our paper:

@misc{joyce2021motif,
      title={MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels},
      author={Robert J. Joyce and Dev Amlani and Charles Nicholas and Edward Raff},
      year={2021},
      eprint={2111.15031},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Downloading the Dataset

Due to the size of the dataset, you must use Git LFS in order to clone the repository. Installation instructions for Git LFS are linked here. On Debian-based systems, the Git LFS package can be installed using:

sudo apt-get install git-lfs

Once Git LFS is installed, you can clone this repository using:

git lfs clone https://github.com/boozallen/MOTIF.git

Dataset Contents

The main dataset is located in dataset/ and contains the following files:

motif_dataset.jsonl

Each line of motif_dataset.jsonl is a .json object with the following entries:

Name Description
md5 MD5 hash of malware sample
sha1 SHA-1 hash of malware sample
sha256 SHA-256 hash of malware sample
reported_hash Hash of malware sample provided in report
reported_family Normalized family name provided in report
aliases List of known aliases for family
label Unique id for malware family (for ML purposes)
report_source Name of organization that published report
report_date Date report was published
report_url URL of report
report_ioc_url URL to report appendix (if any)
appeared Year and month malware sample was first seen

Each .json object also contains EMBER raw features (version 2) for the file:

Name Description
histogram EMBER histogram
byteentropy EMBER byte histogram
strings EMBER strings metadata
general EMBER general file metadata
header EMBER PE header metadata
section EMBER PE section metadata
imports EMBER imports metadata
exports EMBER exports metadata
datadirectories EMBER data directories metadata

motif_families.csv

This file contains an alias mapping for each of the 454 malware families in the MOTIF dataset. It also contains a succinct description of the family and the threat group or campaign that the family is attributed to (if any).

Column Description
Aliases List of known aliases for family
Description Brief sentence describing capabilities of malware family
Attribution (If any) Name of threat actor malware/campaign is attributed to

motif_reports.csv

This file provides information gathered from our original survey of open-source threat reports. We identified 4,369 malware hashes with 595 distinct reported family names during the survey, but we were unable to obtain some of the files and we restricted the MOTIF dataset to only files in the PE file format. The reported hash, family, source, date, URL, and IOC URL of any malware samples which did not make it into the final MOTIF dataset are located here.

MOTIF.7z

The disarmed malware samples are provided in this 1.47GB encrypted .7z file, which can be unzipped using the following password:

i_assume_all_risk_opening_malware

Each file is named in the format MOTIF_MD5, with MD5 indicating the file's hash prior to when it was disarmed.

X_train.dat and y_train.dat

EMBERv2 feature vectors and labels are provided in X_train.dat and y_train.dat, respectively. Feature vectors were computed using LIEF v0.9.0. These files are named for compatibility with the EMBER read_vectorized_features() function. MOTIF is not split into a training or test set, and X_train.dat and y_train.dat contain feature vectors and labels for the entire dataset.

Benchmark Models

We provide code for training the ML models described in our paper, located in benchmarks/. To support these models, code for modified versions of MalConv2 is included in the MalConv2/ directory.

Requirements:

Packages required for training the ML models can be installed using the following commands:

pip3 install -r requirements.txt
python3 setup.py install

Training the LightGBM or outlier detection models also requires EMBER:

pip3 install git+https://github.com/elastic/ember.git

Training the models:

The LightGBM model can be trained using the following command, where /path/to/MOTIF/dataset/ indicates the path to the dataset/ directory.

python3 lgbm.py /path/to/MOTIF/dataset/

The MalConv2 model can be trained using the following command, where /path/to/MOTIF/MOTIF_defanged/ indicates the path to the unzipped folder containing the disarmed malware samples:

python3 malconv.py /path/to/MOTIF/MOTIF_defanged/ /path/to/MOTIF/dataset/motif_dataset.jsonl

The three outlier detection models can be trained using the following command:

python3 outliers.py /path/to/MOTIF/dataset/

Proper Use of Data

Use of this dataset must follow the provided terms of licensing. We intend this dataset to be used for research purposes and have taken measures to prevent abuse by attackers. All files are prevented from running using the same technique as the SOREL dataset. We refer to their statement regarding safety and abuse of the data.

The malware we’re releasing is “disarmed” so that it will not execute. This means it would take knowledge, skill, and time to reconstitute the samples and get them to actually run. That said, we recognize that there is at least some possibility that a skilled attacker could learn techniques from these samples or use samples from the dataset to assemble attack tools to use as part of their malicious activities. However, in reality, there are already many other sources attackers could leverage to gain access to malware information and samples that are easier, faster and more cost effective to use. In other words, this disarmed sample set will have much more value to researchers looking to improve and develop their independent defenses than it will have to attackers.

Owner
Booz Allen Hamilton
The official GitHub organization of Booz Allen Hamilton
Booz Allen Hamilton
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022