Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Overview

Council-GAN

Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Paper

Ori Nizan , Ayellet Tal, Breaking the Cycle - Colleagues are all you need [Project]

gan_council_teaser

gan_council_overview

male2female_gif

glasses_gif

anime_gif

Temporary Telegram Bot

Send image to this telegram bot and it will send you back its female translation using our implementation

Usage

Install requirements

conda env create -f conda_requirements.yml

Downloading the dataset

Download the selfie to anime dataset:

bash ./scripts/download.sh U_GAT_IT_selfie2anime

Download the celeba glasses removal dataset:

bash ./scripts/download.sh celeba_glasses_removal

Download the celeba male to female dataset:

bash ./scripts/download.sh celeba_male2female

use your on dataset:

├──datasets
    └──DATASET_NAME
        ├──testA
            ├──im1.png
            ├──im2.png
            └── ...
        ├──testB
            ├──im3.png
            ├──im4.png
            └── ...
        ├──trainA
            ├──im5.png
            ├──im6.png
            └── ...
        └──trainB
            ├──im7.png
            ├──im8.png
            └── ...

and change the data_root attribute to ./datasets/DATASET_NAME in the yaml file

Training:

Selfie to anime:

python train.py --config configs/anime2face_council_folder.yaml --output_path ./outputs/council_anime2face_256_256 --resume

Glasses removel:

python train.py --config configs/galsses_council_folder.yaml --output_path ./outputs/council_glasses_128_128 --resume

Male to female:

python train.py --config configs/male2female_council_folder.yaml --output_path ./outputs/male2famle_256_256 --resume

Testing:

for converting all the images in input_folder using all the members in the council:

python test_on_folder.py --config configs/anime2face_council_folder.yaml --output_folder ./outputs/council_anime2face_256_256 --checkpoint ./outputs/council_anime2face_256_256/anime2face_council_folder/checkpoints/01000000 --input_folder ./datasets/selfie2anime/testB --a2b 0

or using spsified memeber:

python test_on_folder.py --config configs/anime2face_council_folder.yaml --output_folder ./outputs/council_anime2face_256_256 --checkpoint ./outputs/council_anime2face_256_256/anime2face_council_folder/checkpoints/b2a_gen_3_01000000.pt --input_folder ./datasets/selfie2anime/testB --a2b 0

Download Pretrain Models

Download pretrain male to female model:

bash ./scripts/download.sh pretrain_male_to_female
Then to convert images in --input_folder run:
python test_on_folder.py --config pretrain/m2f/256/male2female_council_folder.yaml --output_folder ./outputs/male2famle_256_256 --checkpoint pretrain/m2f/256/01000000 --input_folder ./datasets/celeba_male2female/testA --a2b 1

Download pretrain glasses removal model:

bash ./scripts/download.sh pretrain_glasses_removal
Then to convert images in --input_folder run:
python test_on_folder.py --config pretrain/glasses_removal/128/galsses_council_folder.yaml --output_folder ./outputs/council_glasses_128_128 --checkpoint pretrain/glasses_removal/128/01000000 --input_folder ./datasets/glasses/testA --a2b 1

Download pretrain selfie to anime model:

bash ./scripts/download.sh pretrain_selfie_to_anime
Then to convert images in --input_folder run:
python test_on_folder.py --config pretrain/anime/256/anime2face_council_folder.yaml --output_folder ./outputs/council_anime2face_256_256 --checkpoint pretrain/anime/256/01000000 --input_folder ./datasets/selfie2anime/testB --a2b 0

Test GUI:

gan_council_overview

test GUI on pretrain model:

male2female
python test_gui.py --config pretrain/m2f/128/male2female_council_folder.yaml --checkpoint pretrain/m2f/128/a2b_gen_0_01000000.pt --a2b 1
glasses Removal
python test_gui.py --config pretrain/glasses_removal/128/galsses_council_folder.yaml --checkpoint pretrain/glasses_removal/128/a2b_gen_3_01000000.pt --a2b 1
selfie2anime
python test_gui.py --config pretrain/anime/256/anime2face_council_folder.yaml --checkpoint pretrain/anime/256/b2a_gen_3_01000000.pt --a2b 0

Open In Colab

Citation

@inproceedings{nizan2020council,
  title={Breaking the Cycle - Colleagues are all you need},
  author={Ori Nizan and Ayellet Tal},
  booktitle={IEEE conference on computer vision and pattern recognition (CVPR)},
  year={2020}
}

Acknowledgement

In this work we based our code on MUNIT implementation. Please cite the original MUNIT if you use their part of the code.

Owner
ori nizan
Computer Vision & Deep Learning PhD student
ori nizan
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
ScriptProfilerPy - Module to visualize where your python script is slow

ScriptProfiler helps you track where your code is slow It provides: Code lines t

Lucas BLP 3 Jun 02, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds

3DVG-Transformer This repository is for the ICCV 2021 paper "3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds" Our method "3DV

22 Dec 11, 2022
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022