Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Overview

Motionformer

This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this repository, we provide PyTorch code for training and testing our proposed Motionformer model. Motionformer use proposed trajectory attention to achieve state-of-the-art results on several video action recognition benchmarks such as Kinetics-400 and Something-Something V2.

If you find Motionformer useful in your research, please use the following BibTeX entry for citation.

@misc{patrick2021keeping,
      title={Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers}, 
      author={Mandela Patrick and Dylan Campbell and Yuki M. Asano and Ishan Misra Florian Metze and Christoph Feichtenhofer and Andrea Vedaldi and Jo\ão F. Henriques},
      year={2021},
      eprint={2106.05392},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Model Zoo

We provide Motionformer models pretrained on Kinetics-400 (K400), Kinetics-600 (K600), Something-Something-V2 (SSv2), and Epic-Kitchens datasets.

name dataset # of frames spatial crop [email protected] [email protected] url
Joint K400 16 224 79.2 94.2 model
Divided K400 16 224 78.5 93.8 model
Motionformer K400 16 224 79.7 94.2 model
Motionformer-HR K400 16 336 81.1 95.2 model
Motionformer-L K400 32 224 80.2 94.8 model
name dataset # of frames spatial crop [email protected] [email protected] url
Motionformer K600 16 224 81.6 95.6 model
Motionformer-HR K600 16 336 82.7 96.1 model
Motionformer-L K600 32 224 82.2 96.0 model
name dataset # of frames spatial crop [email protected] [email protected] url
Joint SSv2 16 224 64.0 88.4 model
Divided SSv2 16 224 64.2 88.6 model
Motionformer SSv2 16 224 66.5 90.1 model
Motionformer-HR SSv2 16 336 67.1 90.6 model
Motionformer-L SSv2 32 224 68.1 91.2 model
name dataset # of frames spatial crop A acc N acc url
Motionformer EK 16 224 43.1 56.5 model
Motionformer-HR EK 16 336 44.5 58.5 model
Motionformer-L EK 32 224 44.1 57.6 model

Installation

First, create a conda virtual environment and activate it:

conda create -n motionformer python=3.8.5 -y
source activate motionformer

Then, install the following packages:

  • torchvision: pip install torchvision or conda install torchvision -c pytorch
  • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
  • simplejson: pip install simplejson
  • einops: pip install einops
  • timm: pip install timm
  • PyAV: conda install av -c conda-forge
  • psutil: pip install psutil
  • scikit-learn: pip install scikit-learn
  • OpenCV: pip install opencv-python
  • tensorboard: pip install tensorboard
  • matplotlib: pip install matplotlib
  • pandas: pip install pandas
  • ffmeg: pip install ffmpeg-python

OR:

simply create conda environment with all packages just from yaml file:

conda env create -f environment.yml

Lastly, build the Motionformer codebase by running:

git clone https://github.com/facebookresearch/Motionformer
cd Motionformer
python setup.py build develop

Usage

Dataset Preparation

Please use the dataset preparation instructions provided in DATASET.md.

Training the Default Motionformer

Training the default Motionformer that uses trajectory attention, and operates on 16-frame clips cropped at 224x224 spatial resolution, can be done using the following command:

python tools/run_net.py \
  --cfg configs/K400/motionformer_224_16x4.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

You may need to pass location of your dataset in the command line by adding DATA.PATH_TO_DATA_DIR path_to_your_dataset, or you can simply modify

DATA:
  PATH_TO_DATA_DIR: path_to_your_dataset

To the yaml configs file, then you do not need to pass it to the command line every time.

Using a Different Number of GPUs

If you want to use a smaller number of GPUs, you need to modify .yaml configuration files in configs/. Specifically, you need to modify the NUM_GPUS, TRAIN.BATCH_SIZE, TEST.BATCH_SIZE, DATA_LOADER.NUM_WORKERS entries in each configuration file. The BATCH_SIZE entry should be the same or higher as the NUM_GPUS entry.

Using Different Self-Attention Schemes

If you want to experiment with different space-time self-attention schemes, e.g., joint space-time attention or divided space-time attention, use the following commands:

python tools/run_net.py \
  --cfg configs/K400/joint_224_16x4.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

and

python tools/run_net.py \
  --cfg configs/K400/divided_224_16x4.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

Training Different Motionformer Variants

If you want to train more powerful Motionformer variants, e.g., Motionformer-HR (operating on 16-frame clips sampled at 336x336 spatial resolution), and Motionformer-L (operating on 32-frame clips sampled at 224x224 spatial resolution), use the following commands:

python tools/run_net.py \
  --cfg configs/K400/motionformer_336_16x8.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

and

python tools/run_net.py \
  --cfg configs/K400/motionformer_224_32x3.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

Note that for these models you will need a set of GPUs with ~32GB of memory.

Inference

Use TRAIN.ENABLE and TEST.ENABLE to control whether training or testing is required for a given run. When testing, you also have to provide the path to the checkpoint model via TEST.CHECKPOINT_FILE_PATH.

python tools/run_net.py \
  --cfg configs/K400/motionformer_224_16x4.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  TEST.CHECKPOINT_FILE_PATH path_to_your_checkpoint \
  TRAIN.ENABLE False \

Alterantively, you can modify provided SLURM script and run following:

sbatch slurm_scripts/test.sh configs/K400/motionformer_224_16x4.yaml path_to_your_checkpoint

Single-Node Training via Slurm

To train Motionformer via Slurm, please check out our single node Slurm training script slurm_scripts/run_single_node_job.sh.

sbatch slurm_scripts/run_single_node_job.sh configs/K400/motionformer_224_16x4.yaml /your/job/dir/${JOB_NAME}/

Multi-Node Training via Submitit

Distributed training is available via Slurm and submitit

pip install submitit

To train Motionformer model on Kinetics using 8 nodes with 8 gpus each use the following command:

python run_with_submitit.py --cfg configs/K400/motionformer_224_16x4.yaml --job_dir  /your/job/dir/${JOB_NAME}/ --partition $PARTITION --num_shards 8 --use_volta32

We provide a script for launching slurm jobs in slurm_scripts/run_multi_node_job.sh.

sbatch slurm_scripts/run_multi_node_job.sh configs/K400/motionformer_224_16x4.yaml /your/job/dir/${JOB_NAME}/

Please note that hyper-parameters in configs were used with 8 nodes with 8 gpus (32 GB). Please scale batch-size, and learning-rate appropriately for your cluster configuration.

Finetuning

To finetune from an existing PyTorch checkpoint add the following line in the command line, or you can also add it in the YAML config:

TRAIN.CHECKPOINT_EPOCH_RESET: True
TRAIN.CHECKPOINT_FILE_PATH path_to_your_PyTorch_checkpoint

Environment

The code was developed using python 3.8.5 on Ubuntu 20.04. For training, we used eight GPU compute nodes each node containing 8 Tesla V100 GPUs (32 GPUs in total). Other platforms or GPU cards have not been fully tested.

License

The majority of this work is licensed under CC-NC 4.0 International license. However, portions of the project are available under separate license terms: SlowFast and pytorch-image-models are licensed under the Apache 2.0 license.

Contributing

We actively welcome your pull requests. Please see CONTRIBUTING.md and CODE_OF_CONDUCT.md for more info.

Acknowledgements

Motionformer is built on top of PySlowFast, Timesformer and pytorch-image-models by Ross Wightman. We thank the authors for releasing their code. If you use our model, please consider citing these works as well:

@misc{fan2020pyslowfast,
  author =       {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and
                  Christoph Feichtenhofer},
  title =        {PySlowFast},
  howpublished = {\url{https://github.com/facebookresearch/slowfast}},
  year =         {2020}
}
@inproceedings{gberta_2021_ICML,
    author  = {Gedas Bertasius and Heng Wang and Lorenzo Torresani},
    title = {Is Space-Time Attention All You Need for Video Understanding?},
    booktitle   = {Proceedings of the International Conference on Machine Learning (ICML)}, 
    month = {July},
    year = {2021}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
Owner
Facebook Research
Facebook Research
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Matias Godoy 148 Dec 29, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer

Csordás Róbert 24 Oct 15, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
This is the official implementation for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents" in NeurIPS 2021.

Observe then Incentivize Experiments This is the code used for the paper "(Almost) Free Incentivized Exploration from Decentralized Learning Agents",

Cong Shen Research Group 0 Mar 08, 2022