Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Overview

Motionformer

This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this repository, we provide PyTorch code for training and testing our proposed Motionformer model. Motionformer use proposed trajectory attention to achieve state-of-the-art results on several video action recognition benchmarks such as Kinetics-400 and Something-Something V2.

If you find Motionformer useful in your research, please use the following BibTeX entry for citation.

@misc{patrick2021keeping,
      title={Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers}, 
      author={Mandela Patrick and Dylan Campbell and Yuki M. Asano and Ishan Misra Florian Metze and Christoph Feichtenhofer and Andrea Vedaldi and Jo\ão F. Henriques},
      year={2021},
      eprint={2106.05392},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Model Zoo

We provide Motionformer models pretrained on Kinetics-400 (K400), Kinetics-600 (K600), Something-Something-V2 (SSv2), and Epic-Kitchens datasets.

name dataset # of frames spatial crop [email protected] [email protected] url
Joint K400 16 224 79.2 94.2 model
Divided K400 16 224 78.5 93.8 model
Motionformer K400 16 224 79.7 94.2 model
Motionformer-HR K400 16 336 81.1 95.2 model
Motionformer-L K400 32 224 80.2 94.8 model
name dataset # of frames spatial crop [email protected] [email protected] url
Motionformer K600 16 224 81.6 95.6 model
Motionformer-HR K600 16 336 82.7 96.1 model
Motionformer-L K600 32 224 82.2 96.0 model
name dataset # of frames spatial crop [email protected] [email protected] url
Joint SSv2 16 224 64.0 88.4 model
Divided SSv2 16 224 64.2 88.6 model
Motionformer SSv2 16 224 66.5 90.1 model
Motionformer-HR SSv2 16 336 67.1 90.6 model
Motionformer-L SSv2 32 224 68.1 91.2 model
name dataset # of frames spatial crop A acc N acc url
Motionformer EK 16 224 43.1 56.5 model
Motionformer-HR EK 16 336 44.5 58.5 model
Motionformer-L EK 32 224 44.1 57.6 model

Installation

First, create a conda virtual environment and activate it:

conda create -n motionformer python=3.8.5 -y
source activate motionformer

Then, install the following packages:

  • torchvision: pip install torchvision or conda install torchvision -c pytorch
  • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
  • simplejson: pip install simplejson
  • einops: pip install einops
  • timm: pip install timm
  • PyAV: conda install av -c conda-forge
  • psutil: pip install psutil
  • scikit-learn: pip install scikit-learn
  • OpenCV: pip install opencv-python
  • tensorboard: pip install tensorboard
  • matplotlib: pip install matplotlib
  • pandas: pip install pandas
  • ffmeg: pip install ffmpeg-python

OR:

simply create conda environment with all packages just from yaml file:

conda env create -f environment.yml

Lastly, build the Motionformer codebase by running:

git clone https://github.com/facebookresearch/Motionformer
cd Motionformer
python setup.py build develop

Usage

Dataset Preparation

Please use the dataset preparation instructions provided in DATASET.md.

Training the Default Motionformer

Training the default Motionformer that uses trajectory attention, and operates on 16-frame clips cropped at 224x224 spatial resolution, can be done using the following command:

python tools/run_net.py \
  --cfg configs/K400/motionformer_224_16x4.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

You may need to pass location of your dataset in the command line by adding DATA.PATH_TO_DATA_DIR path_to_your_dataset, or you can simply modify

DATA:
  PATH_TO_DATA_DIR: path_to_your_dataset

To the yaml configs file, then you do not need to pass it to the command line every time.

Using a Different Number of GPUs

If you want to use a smaller number of GPUs, you need to modify .yaml configuration files in configs/. Specifically, you need to modify the NUM_GPUS, TRAIN.BATCH_SIZE, TEST.BATCH_SIZE, DATA_LOADER.NUM_WORKERS entries in each configuration file. The BATCH_SIZE entry should be the same or higher as the NUM_GPUS entry.

Using Different Self-Attention Schemes

If you want to experiment with different space-time self-attention schemes, e.g., joint space-time attention or divided space-time attention, use the following commands:

python tools/run_net.py \
  --cfg configs/K400/joint_224_16x4.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

and

python tools/run_net.py \
  --cfg configs/K400/divided_224_16x4.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

Training Different Motionformer Variants

If you want to train more powerful Motionformer variants, e.g., Motionformer-HR (operating on 16-frame clips sampled at 336x336 spatial resolution), and Motionformer-L (operating on 32-frame clips sampled at 224x224 spatial resolution), use the following commands:

python tools/run_net.py \
  --cfg configs/K400/motionformer_336_16x8.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

and

python tools/run_net.py \
  --cfg configs/K400/motionformer_224_32x3.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

Note that for these models you will need a set of GPUs with ~32GB of memory.

Inference

Use TRAIN.ENABLE and TEST.ENABLE to control whether training or testing is required for a given run. When testing, you also have to provide the path to the checkpoint model via TEST.CHECKPOINT_FILE_PATH.

python tools/run_net.py \
  --cfg configs/K400/motionformer_224_16x4.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  TEST.CHECKPOINT_FILE_PATH path_to_your_checkpoint \
  TRAIN.ENABLE False \

Alterantively, you can modify provided SLURM script and run following:

sbatch slurm_scripts/test.sh configs/K400/motionformer_224_16x4.yaml path_to_your_checkpoint

Single-Node Training via Slurm

To train Motionformer via Slurm, please check out our single node Slurm training script slurm_scripts/run_single_node_job.sh.

sbatch slurm_scripts/run_single_node_job.sh configs/K400/motionformer_224_16x4.yaml /your/job/dir/${JOB_NAME}/

Multi-Node Training via Submitit

Distributed training is available via Slurm and submitit

pip install submitit

To train Motionformer model on Kinetics using 8 nodes with 8 gpus each use the following command:

python run_with_submitit.py --cfg configs/K400/motionformer_224_16x4.yaml --job_dir  /your/job/dir/${JOB_NAME}/ --partition $PARTITION --num_shards 8 --use_volta32

We provide a script for launching slurm jobs in slurm_scripts/run_multi_node_job.sh.

sbatch slurm_scripts/run_multi_node_job.sh configs/K400/motionformer_224_16x4.yaml /your/job/dir/${JOB_NAME}/

Please note that hyper-parameters in configs were used with 8 nodes with 8 gpus (32 GB). Please scale batch-size, and learning-rate appropriately for your cluster configuration.

Finetuning

To finetune from an existing PyTorch checkpoint add the following line in the command line, or you can also add it in the YAML config:

TRAIN.CHECKPOINT_EPOCH_RESET: True
TRAIN.CHECKPOINT_FILE_PATH path_to_your_PyTorch_checkpoint

Environment

The code was developed using python 3.8.5 on Ubuntu 20.04. For training, we used eight GPU compute nodes each node containing 8 Tesla V100 GPUs (32 GPUs in total). Other platforms or GPU cards have not been fully tested.

License

The majority of this work is licensed under CC-NC 4.0 International license. However, portions of the project are available under separate license terms: SlowFast and pytorch-image-models are licensed under the Apache 2.0 license.

Contributing

We actively welcome your pull requests. Please see CONTRIBUTING.md and CODE_OF_CONDUCT.md for more info.

Acknowledgements

Motionformer is built on top of PySlowFast, Timesformer and pytorch-image-models by Ross Wightman. We thank the authors for releasing their code. If you use our model, please consider citing these works as well:

@misc{fan2020pyslowfast,
  author =       {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and
                  Christoph Feichtenhofer},
  title =        {PySlowFast},
  howpublished = {\url{https://github.com/facebookresearch/slowfast}},
  year =         {2020}
}
@inproceedings{gberta_2021_ICML,
    author  = {Gedas Bertasius and Heng Wang and Lorenzo Torresani},
    title = {Is Space-Time Attention All You Need for Video Understanding?},
    booktitle   = {Proceedings of the International Conference on Machine Learning (ICML)}, 
    month = {July},
    year = {2021}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
Owner
Facebook Research
Facebook Research
KaziText is a tool for modelling common human errors.

KaziText KaziText is a tool for modelling common human errors. It estimates probabilities of individual error types (so called aspects) from grammatic

ÚFAL 3 Nov 24, 2022
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
FinEAS: Financial Embedding Analysis of Sentiment 📈

FinEAS: Financial Embedding Analysis of Sentiment 📈 (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene

LHF Labs 31 Dec 13, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

GalaXC GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification @InProceedings{Saini21, author = {Saini, D. and Jain,

Extreme Classification 28 Dec 05, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
RoBERTa Marathi Language model trained from scratch during huggingface 🤗 x flax community week

RoBERTa base model for Marathi Language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa wa

Nipun Sadvilkar 23 Oct 19, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
🏅 Top 5% in 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지

AI_SPARK_CHALLENG_Object_Detection 제2회 연구개발특구 인공지능 경진대회 AI SPARK 챌린지 🏅 Top 5% in mAP(0.75) (443명 중 13등, mAP: 0.98116) 대회 설명 Edge 환경에서의 가축 Object Dete

3 Sep 19, 2022
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022