Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

Related tags

Deep LearningPurNet
Overview

PurNet

Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

Abstract

Image-based salient object detection has made great progress over the past decades, especially after the revival of deep neural networks. By the aid of attention mechanisms to weight the image features adaptively, recent advanced deep learning-based models encourage the predicted results to approximate the ground-truth masks with as large predictable areas as possible, thus achieving the state-of-the-art performance. However, these methods do not pay enough attention to small areas prone to misprediction. In this way, it is still tough to accurately locate salient objects due to the existence of regions with indistinguishable foreground and background and regions with complex or fine structures. To address these problems, we propose a novel convolutional neural network with purificatory mechanism and structural similarity loss. Specifically, in order to better locate preliminary salient objects, we first introduce the promotion attention, which is based on spatial and channel attention mechanisms to promote attention to salient regions. Subsequently, for the purpose of restoring the indistinguishable regions that can be regarded as error-prone regions of one model, we propose the rectification attention, which is learned from the areas of wrong prediction and guide the network to focus on error-prone regions thus rectifying errors. Through these two attentions, we use the Purificatory Mechanism to impose strict weights with different regions of the whole salient objects and purify results from hard-to-distinguish regions, thus accurately predicting the locations and details of salient objects. In addition to paying different attention to these hard-to-distinguish regions, we also consider the structural constraints on complex regions and propose the Structural Similarity Loss. The proposed loss models the region-level pair-wise relationship between regions to assist these regions to calibrate their own saliency values. In experiments, the proposed purificatory mechanism and structural similarity loss can both effectively improve the performance, and the proposed approach outperforms 19 state-of-the-art methods on six datasets with a notable margin. Also, the proposed method is efficient and runs at over 27FPS on a single NVIDIA 1080Ti GPU.

Method

Framework The framework of our approach. We first extract the common features by extractor, which provides the features for the other three subnetworks. In detail, the promotion subnetwork produces promotion attention to guide the model to focus on salient regions, and the rectification subnetwork give the rectification attention for rectifying the errors. These two kind of attentions are combined to formed the purificatory mechanism, which is integrated in the purificatory subnetwork to refine the prediction of salient objects progressively.

Quantitative Evaluation

Quantitative Evaluation

Qualitative Evaluation

Qualitative Evaluation

Usage

Dataset

Download the DUTS dataset, and the corresponding superpixes can be downloaded. BaiduYun (Code: 2v1f)

Training

1. install pytorch
2. train stage1, run python train.py
3. train stage2, run python train.py
4. train stage3, run python train.py

The trained checkpoint can be downloaded. BaiduYun (Code: c6sk)

Testing

python test_code/test.py

The predicted saliency map of ECSSD can be downloaded. BaiduYun (Code: 1h4g) Results on different datasets including ECSSD, DUT-OMRON, PASCAL-S, HKU-IS, DUTS-TE, XPIE can all obtain by above testing code.

Evaluation

matlab -nosplash -nodesktop -r evaluation_all

Citation

@article{li2021salient,
  title={Salient object detection with purificatory mechanism and structural similarity loss},
  author={Li, Jia and Su, Jinming and Xia, Changqun and Ma, Mingcan and Tian, Yonghong},
  journal={IEEE Transactions on Image Processing},
  volume={30},
  pages={6855--6868},
  year={2021},
  publisher={IEEE}
}
Owner
Jinming Su
Good Luck!
Jinming Su
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022