Prevent `CUDA error: out of memory` in just 1 line of code.

Overview

🐨 Koila

Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it.

Type Checking Formatting Unit testing License: MIT Tweet

Koila

🚀 Features

  • 🙅 Prevents CUDA error: out of memory error with one single line of code.

  • 🦥 Lazily evaluates pytorch code to save computing power.

  • ✂️ Automatically splits along the batch dimension to more GPU friendly numbers (2's powers) to speed up the execution.

  • 🤏 Minimal API (wrapping all inputs will be enough).

🤔 Why Koila?

Ever encountered RuntimeError: CUDA error: out of memory? We all love PyTorch because of its speed, efficiency, and transparency, but that means it doesn't do extra things. Things like preventing a very common error that has been bothering many users since 2017.

This library aims to prevent that by being a light-weight wrapper over native PyTorch. When a tensor is wrapped, the library automatically computes the amount of remaining GPU memory and uses the right batch size, saving everyone from having to manually finetune the batch size whenever a model is used.

Also, the library automatically uses the right batch size to GPU. Did you know that using bigger batches doesn't always speed up processing? It's handled automatically in this library too.

Because Koila code is PyTorch code, as it runs PyTorch under the hood, you can use both together without worrying compatibility.

Oh, and all that in 1 line of code! 😊

⬇️ Installation

Koila is available on PyPI. To install, run the following command.

pip install koila

🏃 Getting started

The usage is dead simple. For example, you have the following PyTorch code (copied from PyTorch's tutorial)

Define the input, label, and model:

# A batch of MNIST image
input = torch.randn(8, 28, 28)

# A batch of labels
label = torch.randn(0, 10, [8])

class NeuralNetwork(Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = Flatten()
        self.linear_relu_stack = Sequential(
            Linear(28 * 28, 512),
            ReLU(),
            Linear(512, 512),
            ReLU(),
            Linear(512, 10),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

Define the loss function, calculate output and losses.

loss_fn = CrossEntropyLoss()

# Calculate losses
out = nn(t)
loss = loss_fn(out, label)

# Backward pass
nn.zero_grad()
loss.backward()

Ok. How to adapt the code to use Koila's features?

You change this line of code:

# Wrap the input tensor.
# If a batch argument is provided, that dimension of the tensor would be treated as the batch.
# In this case, the first dimension (dim=0) is used as batch's dimension.
input = lazy(torch.randn(8, 28, 28), batch=0)

Done. You will not run out of memory again.

See examples/getting-started.py for the full example.

🏋️ How does it work under the hood?

CUDA error: out of memory generally happens in forward pass, because temporary variables will need to be saved in memory.

Koila is a thin wrapper around PyTorch. It is inspired by TensorFlow's static/lazy evaluation. By building the graph first, and run the model only when necessarily, the model has access to all the information necessarily to determine how much resources is really need to compute the model.

In terms of memory usage, only shapes of temporary variables are required to calculate the memory usage of those variables used in the model. For example, + takes in two tensors with equal sizes, and outputs a tensor with a size equal to the input size, and log takes in one tensor, and outputs another tensor with the same shape. Broadcasting makes it a little more complicated than that, but the general ideas are the same. By tracking all these shapes, one could easily tell how much memory is used in a forward pass. And select the optimal batch size accordingly.

🐌 It sounds slow. Is it?

NO. Indeed, calculating shapes and computing the size and memory usage sound like a lot of work. However, keep in mind that even a gigantic model like GPT-3, which has 96 layers, has only a few hundred nodes in its computing graph. Because Koila's algorithms run in linear time, any modern computer will be able to handle a graph like this instantly.

Most of the computing is spent on computing individual tensors, and transferring tensors across devices. And bear in mind that those checks happen in vanilla PyTorch anyways. So no, not slow at all.

🔊 How to pronounce koila?

This project was originally named koala, the laziest species in the world, and this project is about lazy evaluation of tensors. However, as that name is taken on PyPI, I had no choice but to use another name. Koila is a word made up by me, pronounced similarly to voila (It's a French word), so sounds like koala.

Give me a star!

If you like what you see, please consider giving this a star (★)!

🏗️ Why did I build this?

Batch size search is not new. In fact, the mighty popular PyTorch Lightning has it. So why did I go through the trouble and build this project?

PyTorch Lightning's batch size search is deeply integrated in its own ecosystem. You have to use its DataLoader, subclass from their models, and train your models accordingly. While it works well with supervised learning tasks, it's really painful to use in a reinforcement learning task, where interacting with the environment is a must.

In comparison, because Koila is a super lightweight PyTorch wrapper, it works when PyTorch works, thus providing maximum flexibility and minimal changes to existing code.

📝 Todos

  • 🧩 Provide an extensible API to write custom functions for the users.
  • 😌 Simplify internal workings even further. (Especially interaction between Tensors and LazyTensors).
  • 🍪 Work with multiple GPUs.

🚧 Warning

The code works on many cases, but it's still a work in progress. This is not (yet) a fully PyTorch compatible library due to limited time.

🥰 Contributing

We take openness and inclusiveness very seriously. We have adopted the following Code of Conduct.

Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021
[NeurIPS2021] Code Release of Learning Transferable Perturbations

Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is

Krishna Kanth 17 Nov 11, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022