PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

Overview

StructDepth

PyTorch implementation of our ICCV2021 paper:

StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

Boying Li*, Yuan Huang*, Zeyu Liu, Danping Zou, Wenxian Yu

(* Equal Contribution) Image text Please consider citing our paper in your publications if the project helps your research.

@inproceedings{structdepth,
  title={StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation},
  author={Li, Boying and Huang, Yuan and Liu, Zeyu and Zou, Danping and Yu, Wenxian},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
}

Getting Started

Installation

The Python and PyTorch versions we use:

python=3.6

pytorch=1.7.1=py3.6_cuda10.1.243_cudnn7.6.3_0

Step1: Creating a virtual environment

conda create -n struct_depth python=3.6
conda activate struct_depth
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch

Step2: Download the modified scikit_image package , in which the input parameters of the Felzenswalb algorithm have been changed to accommodate our method.

unzip scikit-image-0.17.2.zip
cd scikit-image-0.17.2
python setup.py build_ext -i
pip install -e .

Step3: Installing other packages

pip install -r requirements.txt

Download pretrained model

Please download pretrained models and unzip them to MODEL_PATH

Inference single image

python inference_single_image.py --image_path=/path/to/image --load_weights_folder=MODEL_PATH

Evaluation

Download test dataset

Please download test dataset

It is recommended to unpack all test data and training data into the same data path and then modify the DATA_PATH when running a training or evaluation script.

Evaluate NYUv2/InteriorNet/ScanNet depth or norm

Modify the evaluation script in eval.sh to evaluate NYUv2/InteriorNet/ScanNet depth and norm separately

python evaluation/nyuv2_eval_norm.py \
  --data_path DATA_PATH \
  --load_weights_folder MODEL_PATH \

Trainning

Download NYU V2 dataset

The raw NYU dataset is about 400G and has 590 videos. You can download the raw datasets from there

Extract Main directions

python extract_vps_nyu.py --data_path DATA_PATH --output_dir VPS_PATH --failed_list TMP_LIST -- thresh 60 

If you need to train with a random flip, run the main direction extraction script on the images before and after the flip(add --flip) in advance, and note the failure examples, which can be skipped by referring to the code in datasets/nyu_datases.py.

Training

Modify the training script train.sh for PATH or different trainning settings.

python train.py \
  --data_path DATA_PATH \
  --val_path DATA_PATH \
  --train_split ./splits/nyu_train_0_10_20_30_40_21483-exceptfailed-21465.txt \
  --vps_path VPS_PATH \
  --log_dir LOG_PATH \
  --model_name 1 \
  --batch_size 32 \
  --num_epochs 50 \
  --start_epoch 0 \
  --using_disp2seg \
  --using_normloss \
  --load_weights_folder PRETRAIN_MODEL_PATH \
  --lambda_planar_reg 0.1 \
  --lambda_norm_reg 0.05 \
  --planar_thresh 200 \

Acknowledgement

We borrowed a lot of codes from scikit-image, monodepth2, P2Net, and LEGO. Thanks for their excellent works!

Owner
SJTU-ViSYS
Vision and Intelligent System Group
SJTU-ViSYS
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S

Justin Sun 12 Dec 27, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
A naive ROS interface for visualDet3D.

YOLO3D ROS Node This repo contains a Monocular 3D detection Ros node. Base on https://github.com/Owen-Liuyuxuan/visualDet3D All parameters are exposed

Yuxuan Liu 19 Oct 08, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022