This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

Overview

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging

To appear on KDD'21...[pdf]

This project provides an unsupervised framework for mining and tagging quality phrases on text corpora. In this work, we recognize the power of pretrained language models in identifying the structure of a sentence. The attention matrices generated by a Transformer model are informative to distinguish quality phrases from ordinary spans, as illustrated in the following example.

drawing

With a lightweight CNN model to capture inter-word relationships from various ranges, we can effectively tackle the task of phrase tagging as a multi-channel image classifiaction problem.

For model training, we seek to alleviate the need for human annotation and external knowledge bases. Instead, we show that sufficient supervision can be directly mined from large-scale unlabeled corpus. Specifically, we mine frequent max patterns with each document as context, since by definition, high-quality phrases are sequences that are consistently used in context. Compared with labels generated by distant supervision, silver labels mined from the corpus itself preserve better diversity, coverage, and contextual completeness. The superiority is supported by comparison on two public datasets.

image

We compare our method with existing ones on the KP20k dataset (publication data from CS domain) and the KPTimes dataset (news articles). UCPhrase significantly outperforms prior arts without supervision. Compared with off-the-shelf phrase tagging tools, UCPhrase also shows unique advantages, especially in its ability to generalize to specific domains without reliance on manually curated labels or KBs. We provide comprehensive case studies to demonstrate the comparison among different tagging methods. We also have some interesting findings in the discussion sections.

We aim to build UCPhrase as a practical tool for phrase tagging, though it is certainly far from perfect. Please feel free to try on your own corpus and give us feedbacks if you have any ideas that can help build better phrase tagging tools!

Facts: UCPhrase is a joint work by researchers from UI at Urbana Champaign, and University of California San Diago.

Quick Start

Step 1: Download and unzip the data folder

wget https://www.dropbox.com/s/1bv7dnjawykjsji/data.zip?dl=0 -O data.zip
unzip -n data.zip

Step 2: Install and compile dependencies

bash build.sh

Step 3: Run experiments

cd src
python exp.py --gpu 0 --dir_data ../data/devdata

Model checkpoint and output files will be stored under the generated "experiments" folder.

Citation

If you find the implementation useful, please consider citing the following paper:

Xiaotao Gu*, Zihan Wang*, Zhenyu Bi, Yu Meng, Liyuan Liu, Jiawei Han, Jingbo Shang, "UCPhrase: Unsupervised Context-aware Quality Phrase Tagging", in Proc. of 2021 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD'21), Aug. 2021

Owner
Xiaotao Gu
Ph.D. student in CS.
Xiaotao Gu
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022