This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

Overview

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging

To appear on KDD'21...[pdf]

This project provides an unsupervised framework for mining and tagging quality phrases on text corpora. In this work, we recognize the power of pretrained language models in identifying the structure of a sentence. The attention matrices generated by a Transformer model are informative to distinguish quality phrases from ordinary spans, as illustrated in the following example.

drawing

With a lightweight CNN model to capture inter-word relationships from various ranges, we can effectively tackle the task of phrase tagging as a multi-channel image classifiaction problem.

For model training, we seek to alleviate the need for human annotation and external knowledge bases. Instead, we show that sufficient supervision can be directly mined from large-scale unlabeled corpus. Specifically, we mine frequent max patterns with each document as context, since by definition, high-quality phrases are sequences that are consistently used in context. Compared with labels generated by distant supervision, silver labels mined from the corpus itself preserve better diversity, coverage, and contextual completeness. The superiority is supported by comparison on two public datasets.

image

We compare our method with existing ones on the KP20k dataset (publication data from CS domain) and the KPTimes dataset (news articles). UCPhrase significantly outperforms prior arts without supervision. Compared with off-the-shelf phrase tagging tools, UCPhrase also shows unique advantages, especially in its ability to generalize to specific domains without reliance on manually curated labels or KBs. We provide comprehensive case studies to demonstrate the comparison among different tagging methods. We also have some interesting findings in the discussion sections.

We aim to build UCPhrase as a practical tool for phrase tagging, though it is certainly far from perfect. Please feel free to try on your own corpus and give us feedbacks if you have any ideas that can help build better phrase tagging tools!

Facts: UCPhrase is a joint work by researchers from UI at Urbana Champaign, and University of California San Diago.

Quick Start

Step 1: Download and unzip the data folder

wget https://www.dropbox.com/s/1bv7dnjawykjsji/data.zip?dl=0 -O data.zip
unzip -n data.zip

Step 2: Install and compile dependencies

bash build.sh

Step 3: Run experiments

cd src
python exp.py --gpu 0 --dir_data ../data/devdata

Model checkpoint and output files will be stored under the generated "experiments" folder.

Citation

If you find the implementation useful, please consider citing the following paper:

Xiaotao Gu*, Zihan Wang*, Zhenyu Bi, Yu Meng, Liyuan Liu, Jiawei Han, Jingbo Shang, "UCPhrase: Unsupervised Context-aware Quality Phrase Tagging", in Proc. of 2021 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD'21), Aug. 2021

Owner
Xiaotao Gu
Ph.D. student in CS.
Xiaotao Gu
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
Some pvbatch (paraview) scripts for postprocessing OpenFOAM data

pvbatchForFoam Some pvbatch (paraview) scripts for postprocessing OpenFOAM data For every script there is a help message available: pvbatch pv_state_s

Morev Ilya 2 Oct 26, 2022
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
190 Jan 03, 2023
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022