Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Related tags

Deep Learningunmix
Overview

Status: Archive (code is provided as-is, no updates expected)

Disclaimer

This code is a based on "Jukebox: A Generative Model for Music" Paper

We adjusted it for our application: Demixing an audio signal into four different stems: drums, basss, vocals, other.

Unmix

Install

Install the conda package manager from https://docs.conda.io/en/latest/miniconda.html

# Required: Sampling
conda create --name unmix python=3.7.5
conda activate unmix
conda install mpi4py=3.0.3 # if this fails, try: pip install mpi4py==3.0.3
conda install pytorch=1.4 torchvision=0.5 cudatoolkit=10.0 -c pytorch
git clone https://github.com/wzaiealmri/unmix.git
cd unmix
pip install -r requirements.txt
pip install -e .

# Required: Training
conda install av=7.0.01 -c conda-forge
pip install ./tensorboardX

# Optional: Apex for faster training with fused_adam
conda install pytorch=1.1 torchvision=0.3 cudatoolkit=10.0 -c pytorch
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./apex

Training

Stage 1: VQVAE

To train the vqvae, run

mpiexec -n {ngpus} python unmix/train.py --hps=vqvae --name=vqvae_drums_b4 --sr=44100 --sample_length=393216 --bs=4 --audio_files_dir="Put the path to the specific stem audio folder" --labels=False --train --aug_shift --aug_blend

Here, {audio_files_dir} is the directory in which you can put the audio files for your stem , and {ngpus} is number of GPU's you want to use to train. The above trains a one-level VQ-VAE with downs_t = (3), and strides_t = (2) meaning we downsample the audio by 2**3 = 8 to get the first level of codes.
Checkpoints are stored in the logs folder. You can monitor the training by running Tensorboard

tensorboard --logdir logs

Stage 2: Encoder

Train encoder

Once the VQ-VAE is trained, we can restore it from its saved checkpoint and train encoder on the learnt codes. To train the encoder, we can run

mpiexec -n {ngpus} python unmix_encoder/train.py --hps=vqvae --name=encoder_drums__b4 --sr=44100 --sample_length=393216 --bs=4 --audio_files_dir="path to the mix dataset" --labels=False --train --aug_shift --aug_blend --encoder=True --channel=_1 --restore_vqvae="path to the specific checkpoint of the vq-vae"

License (Jukebox OpenAI)

Noncommercial Use License

It covers both released code and weights.

Owner
Wadhah Zai El Amri
Wadhah Zai El Amri
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022