Full Stack Deep Learning Labs

Overview

Full Stack Deep Learning Labs

Welcome!

Project developed during lab sessions of the Full Stack Deep Learning Bootcamp.

  • We will build a handwriting recognition system from scratch, and deploy it as a web service.
  • Uses Keras, but designed to be modular, hackable, and scalable
  • Provides code for training models in parallel and store evaluation in Weights & Biases
  • We will set up continuous integration system for our codebase, which will check functionality of code and evaluate the model about to be deployed.
  • We will package up the prediction system as a REST API, deployable as a Docker container.
  • We will deploy the prediction system as a serverless function to Amazon Lambda.
  • Lastly, we will set up monitoring that alerts us when the incoming data distribution changes.

Schedule for the November 2019 Bootcamp

  • First session (90 min)
    • Setup (10 min): Get set up with jupyterhub.
    • Introduction to problem and project structure (20 min).
    • Gather handwriting data (10 min).
    • Lab 1 (20 min): Introduce EMNIST. Training code details. Train & evaluate character prediction baselines.
    • Lab 2 (30 min): Introduce EMNIST Lines. Overview of CTC loss and model architecture. Train our model on EMNIST Lines.
  • Second session (60 min)
    • Lab 3 (40 min): Weights & Biases + parallel experiments
    • Lab 4 (20 min): IAM Lines and experimentation time (hyperparameter sweeps, leave running overnight).
  • Third session (90 min)
    • Review results from the class on W&B
    • Lab 5 (45 min) Train & evaluate line detection model.
    • Lab 6 (45 min) Label handwriting data generated by the class, download and version results.
  • Fourth session (75 min)
    • Lab 7 (15 min) Add continuous integration that runs linting and tests on our codebase.
    • Lab 8 (60 min) Deploy the trained model to the web using AWS Lambda.
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
πŸ‘¨β€πŸ’» run nanosaur in simulation with Gazebo/Ingnition

πŸ¦• πŸ‘¨β€πŸ’» nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
πŸ”ͺ Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

ZalΓ‘n Borsos 51 Dec 30, 2022
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❀️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(δ»˜η‡•εΉ³) 129 Dec 30, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
A pytorch implementation of faster RCNN detection framework (Use detectron2, it's a masterpiece)

Notice(2019.11.2) This repo was built back two years ago when there were no pytorch detection implementation that can achieve reasonable performance.

Ruotian(RT) Luo 1.8k Jan 01, 2023