Py-faster-rcnn - Faster R-CNN (Python implementation)

Overview

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN.

Disclaimer

The official Faster R-CNN code (written in MATLAB) is available here. If your goal is to reproduce the results in our NIPS 2015 paper, please use the official code.

This repository contains a Python reimplementation of the MATLAB code. This Python implementation is built on a fork of Fast R-CNN. There are slight differences between the two implementations. In particular, this Python port

  • is ~10% slower at test-time, because some operations execute on the CPU in Python layers (e.g., 220ms / image vs. 200ms / image for VGG16)
  • gives similar, but not exactly the same, mAP as the MATLAB version
  • is not compatible with models trained using the MATLAB code due to the minor implementation differences
  • includes approximate joint training that is 1.5x faster than alternating optimization (for VGG16) -- see these slides for more information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

By Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun (Microsoft Research)

This Python implementation contains contributions from Sean Bell (Cornell) written during an MSR internship.

Please see the official README.md for more details.

Faster R-CNN was initially described in an arXiv tech report and was subsequently published in NIPS 2015.

License

Faster R-CNN is released under the MIT License (refer to the LICENSE file for details).

Citing Faster R-CNN

If you find Faster R-CNN useful in your research, please consider citing:

@inproceedings{renNIPS15fasterrcnn,
    Author = {Shaoqing Ren and Kaiming He and Ross Girshick and Jian Sun},
    Title = {Faster {R-CNN}: Towards Real-Time Object Detection
             with Region Proposal Networks},
    Booktitle = {Advances in Neural Information Processing Systems ({NIPS})},
    Year = {2015}
}

Contents

  1. Requirements: software
  2. Requirements: hardware
  3. Basic installation
  4. Demo
  5. Beyond the demo: training and testing
  6. Usage

Requirements: software

NOTE If you are having issues compiling and you are using a recent version of CUDA/cuDNN, please consult this issue for a workaround

  1. Requirements for Caffe and pycaffe (see: Caffe installation instructions)

Note: Caffe must be built with support for Python layers!

# In your Makefile.config, make sure to have this line uncommented
WITH_PYTHON_LAYER := 1
# Unrelatedly, it's also recommended that you use CUDNN
USE_CUDNN := 1

You can download my Makefile.config for reference. 2. Python packages you might not have: cython, python-opencv, easydict 3. [Optional] MATLAB is required for official PASCAL VOC evaluation only. The code now includes unofficial Python evaluation code.

Requirements: hardware

  1. For training smaller networks (ZF, VGG_CNN_M_1024) a good GPU (e.g., Titan, K20, K40, ...) with at least 3G of memory suffices
  2. For training Fast R-CNN with VGG16, you'll need a K40 (~11G of memory)
  3. For training the end-to-end version of Faster R-CNN with VGG16, 3G of GPU memory is sufficient (using CUDNN)

Installation (sufficient for the demo)

  1. Clone the Faster R-CNN repository
# Make sure to clone with --recursive
git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git
  1. We'll call the directory that you cloned Faster R-CNN into FRCN_ROOT

    Ignore notes 1 and 2 if you followed step 1 above.

    Note 1: If you didn't clone Faster R-CNN with the --recursive flag, then you'll need to manually clone the caffe-fast-rcnn submodule:

    git submodule update --init --recursive

    Note 2: The caffe-fast-rcnn submodule needs to be on the faster-rcnn branch (or equivalent detached state). This will happen automatically if you followed step 1 instructions.

  2. Build the Cython modules

    cd $FRCN_ROOT/lib
    make
  3. Build Caffe and pycaffe

    cd $FRCN_ROOT/caffe-fast-rcnn
    # Now follow the Caffe installation instructions here:
    #   http://caffe.berkeleyvision.org/installation.html
    
    # If you're experienced with Caffe and have all of the requirements installed
    # and your Makefile.config in place, then simply do:
    make -j8 && make pycaffe
  4. Download pre-computed Faster R-CNN detectors

    cd $FRCN_ROOT
    ./data/scripts/fetch_faster_rcnn_models.sh

    This will populate the $FRCN_ROOT/data folder with faster_rcnn_models. See data/README.md for details. These models were trained on VOC 2007 trainval.

Demo

After successfully completing basic installation, you'll be ready to run the demo.

To run the demo

cd $FRCN_ROOT
./tools/demo.py

The demo performs detection using a VGG16 network trained for detection on PASCAL VOC 2007.

Beyond the demo: installation for training and testing models

  1. Download the training, validation, test data and VOCdevkit

    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
  2. Extract all of these tars into one directory named VOCdevkit

    tar xvf VOCtrainval_06-Nov-2007.tar
    tar xvf VOCtest_06-Nov-2007.tar
    tar xvf VOCdevkit_08-Jun-2007.tar
  3. It should have this basic structure

    $VOCdevkit/                           # development kit
    $VOCdevkit/VOCcode/                   # VOC utility code
    $VOCdevkit/VOC2007                    # image sets, annotations, etc.
    # ... and several other directories ...
  4. Create symlinks for the PASCAL VOC dataset

    cd $FRCN_ROOT/data
    ln -s $VOCdevkit VOCdevkit2007

    Using symlinks is a good idea because you will likely want to share the same PASCAL dataset installation between multiple projects.

  5. [Optional] follow similar steps to get PASCAL VOC 2010 and 2012

  6. [Optional] If you want to use COCO, please see some notes under data/README.md

  7. Follow the next sections to download pre-trained ImageNet models

Download pre-trained ImageNet models

Pre-trained ImageNet models can be downloaded for the three networks described in the paper: ZF and VGG16.

cd $FRCN_ROOT
./data/scripts/fetch_imagenet_models.sh

VGG16 comes from the Caffe Model Zoo, but is provided here for your convenience. ZF was trained at MSRA.

Usage

To train and test a Faster R-CNN detector using the alternating optimization algorithm from our NIPS 2015 paper, use experiments/scripts/faster_rcnn_alt_opt.sh. Output is written underneath $FRCN_ROOT/output.

cd $FRCN_ROOT
./experiments/scripts/faster_rcnn_alt_opt.sh [GPU_ID] [NET] [--set ...]
# GPU_ID is the GPU you want to train on
# NET in {ZF, VGG_CNN_M_1024, VGG16} is the network arch to use
# --set ... allows you to specify fast_rcnn.config options, e.g.
#   --set EXP_DIR seed_rng1701 RNG_SEED 1701

("alt opt" refers to the alternating optimization training algorithm described in the NIPS paper.)

To train and test a Faster R-CNN detector using the approximate joint training method, use experiments/scripts/faster_rcnn_end2end.sh. Output is written underneath $FRCN_ROOT/output.

cd $FRCN_ROOT
./experiments/scripts/faster_rcnn_end2end.sh [GPU_ID] [NET] [--set ...]
# GPU_ID is the GPU you want to train on
# NET in {ZF, VGG_CNN_M_1024, VGG16} is the network arch to use
# --set ... allows you to specify fast_rcnn.config options, e.g.
#   --set EXP_DIR seed_rng1701 RNG_SEED 1701

This method trains the RPN module jointly with the Fast R-CNN network, rather than alternating between training the two. It results in faster (~ 1.5x speedup) training times and similar detection accuracy. See these slides for more details.

Artifacts generated by the scripts in tools are written in this directory.

Trained Fast R-CNN networks are saved under:

output/
   
    /
    
     /

    
   

Test outputs are saved under:

output/
   
    /
    
     /
     
      /

     
    
   
Owner
Ross Girshick
Ross Girshick
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
This is a beginner-friendly repo to make a collection of some unique and awesome projects. Everyone in the community can benefit & get inspired by the amazing projects present over here.

Awesome-Projects-Collection Quality over Quantity :) What to do? Add some unique and amazing projects as per your favourite tech stack for the communi

Rohan Sharma 178 Jan 01, 2023