Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

Overview

HackerMath for Machine Learning

“Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard Feynman

Math literacy, including proficiency in Linear Algebra and Statistics,is a must for anyone pursuing a career in data science. The goal of this workshop is to introduce some key concepts from these domains that get used repeatedly in data science applications. Our approach is what we call the “Hacker’s way”. Instead of going back to formulae and proofs, we teach the concepts by writing code. And in practical applications. Concepts don’t remain sticky if the usage is never taught.

The focus will be on depth rather than breadth. Three areas are chosen - Hypothesis Testing, Supervised Learning and Unsupervised Learning. They will be covered to sufficient depth - 50% of the time will be on the concepts and 50% of the time will be spent coding them.

More details at http://amitkaps.com/hackermath

See it in action: Binder

Module #1: Hypothesis Testing

Math Concepts

  • Basic Metrics: Mean, Variance, Covariance, Correlation
  • Discrete Probability Distributions: Bernoulli, Binomial
  • Cumulative Mass Function, Probability Mass Function
  • Continuous Probability Distributions: Poisson, Uniform, Normal, Beta, Gamma
  • Cumulative Distribution Function, Probability Density Function

ML Applications

  • Direct Simulation
  • Shuffling
  • Bootstrapping
  • Application to A/B Testing

Module #2: Supervised Learning

Math Concepts

  • Basics of Matrix Operation
  • Matrix Determinant, Inverse
  • Basics of Linear Algebra
  • Solve for Ax=b for nxn
  • Solve for Ax=b for nxp+1

ML Applications

  • Linear Regression
  • L2 Regularization
  • Gradient Descent
  • Linear Classifier
  • Logistic Regression

Module #3: Unsupervised Learning

Math Concepts

  • Matrix Projections
  • Solve for Ax=λx for nxn
  • Eigenvectors & Eigenvalues
  • Distance in Vector Space

ML Applications

  • Dimensionality Reduction
  • Principle Component Analysis
  • Cluster Analysis

Target Audience

  • Someone with a background in programming who wants to pick the math needed for data science and get a flavor for different data science problems
  • Someone who is a beginner in data science or has been doing data analysis (at least using Excel at a minimum) and wants to pick skills to take the next step in their data science career

Pre-requisites

  • Having a basic understanding of linear algebra would help. And we know you may have forgotten all about it from your school or college days. So here is an amazing video playlist by @3blue1brown to learn The Essence of Linear Algebra in a very visual way.
  • Also, a touch of calculus knowledge would make it also easier. So if you want to brush up your basic calculus skills, then @3blue1brown has another amazing video playlist to learn The Essence of Calculus in a very visual way.
  • Programming knowledge is mandatory. You should, at the bare minimum, be able to write conditional statements, use loops, be comfortable writing functions and be able to understand code snippets and come up with programming logic. Since we will be using Python - brush up your basics there. Specifically, we expect you to know the first three sections from this: http://anandology.com/python-practice-book/

Software Requirements

You will require the Python data stack for the workshop. Please install Ananconda for Python 3.5 for the workshop. That has everything we need for the workshop. For attendees more curious, we will be using Jupyter Notebook as our IDE. We will be introducing numpy, scipy, seaborn, matplotlib, plotnine, statsmodel and scikit-learn.

The working repo for this workshop is at https://github.com/amitkaps/hackermath/


Authors:

Amit Kapoor

Bargava Subramanian

Owner
Amit Kapoor
Crafting Visual Stories with Data.
Amit Kapoor
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
codebase for "A Theory of the Inductive Bias and Generalization of Kernel Regression and Wide Neural Networks"

Eigenlearning This repo contains code for replicating the experiments of the paper A Theory of the Inductive Bias and Generalization of Kernel Regress

Jamie Simon 45 Dec 02, 2022
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022