Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

Overview

HackerMath for Machine Learning

“Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard Feynman

Math literacy, including proficiency in Linear Algebra and Statistics,is a must for anyone pursuing a career in data science. The goal of this workshop is to introduce some key concepts from these domains that get used repeatedly in data science applications. Our approach is what we call the “Hacker’s way”. Instead of going back to formulae and proofs, we teach the concepts by writing code. And in practical applications. Concepts don’t remain sticky if the usage is never taught.

The focus will be on depth rather than breadth. Three areas are chosen - Hypothesis Testing, Supervised Learning and Unsupervised Learning. They will be covered to sufficient depth - 50% of the time will be on the concepts and 50% of the time will be spent coding them.

More details at http://amitkaps.com/hackermath

See it in action: Binder

Module #1: Hypothesis Testing

Math Concepts

  • Basic Metrics: Mean, Variance, Covariance, Correlation
  • Discrete Probability Distributions: Bernoulli, Binomial
  • Cumulative Mass Function, Probability Mass Function
  • Continuous Probability Distributions: Poisson, Uniform, Normal, Beta, Gamma
  • Cumulative Distribution Function, Probability Density Function

ML Applications

  • Direct Simulation
  • Shuffling
  • Bootstrapping
  • Application to A/B Testing

Module #2: Supervised Learning

Math Concepts

  • Basics of Matrix Operation
  • Matrix Determinant, Inverse
  • Basics of Linear Algebra
  • Solve for Ax=b for nxn
  • Solve for Ax=b for nxp+1

ML Applications

  • Linear Regression
  • L2 Regularization
  • Gradient Descent
  • Linear Classifier
  • Logistic Regression

Module #3: Unsupervised Learning

Math Concepts

  • Matrix Projections
  • Solve for Ax=λx for nxn
  • Eigenvectors & Eigenvalues
  • Distance in Vector Space

ML Applications

  • Dimensionality Reduction
  • Principle Component Analysis
  • Cluster Analysis

Target Audience

  • Someone with a background in programming who wants to pick the math needed for data science and get a flavor for different data science problems
  • Someone who is a beginner in data science or has been doing data analysis (at least using Excel at a minimum) and wants to pick skills to take the next step in their data science career

Pre-requisites

  • Having a basic understanding of linear algebra would help. And we know you may have forgotten all about it from your school or college days. So here is an amazing video playlist by @3blue1brown to learn The Essence of Linear Algebra in a very visual way.
  • Also, a touch of calculus knowledge would make it also easier. So if you want to brush up your basic calculus skills, then @3blue1brown has another amazing video playlist to learn The Essence of Calculus in a very visual way.
  • Programming knowledge is mandatory. You should, at the bare minimum, be able to write conditional statements, use loops, be comfortable writing functions and be able to understand code snippets and come up with programming logic. Since we will be using Python - brush up your basics there. Specifically, we expect you to know the first three sections from this: http://anandology.com/python-practice-book/

Software Requirements

You will require the Python data stack for the workshop. Please install Ananconda for Python 3.5 for the workshop. That has everything we need for the workshop. For attendees more curious, we will be using Jupyter Notebook as our IDE. We will be introducing numpy, scipy, seaborn, matplotlib, plotnine, statsmodel and scikit-learn.

The working repo for this workshop is at https://github.com/amitkaps/hackermath/


Authors:

Amit Kapoor

Bargava Subramanian

Owner
Amit Kapoor
Crafting Visual Stories with Data.
Amit Kapoor
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
This repository includes different versions of the prescribed-time controller as Simulink blocks and MATLAB script codes for engineering applications.

Prescribed-time Control Prescribed-time control (PTC) blocks in Simulink environment, MATLAB R2020b. For more theoretical details, refer to the papers

Amir Shakouri 1 Mar 11, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.

Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,

Massimiliano Patacchiola 135 Jan 03, 2023
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Phoenix-Drone-Simulation An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor: Can be used for Reinforcement Le

Sven Gronauer 8 Dec 07, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021