KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

Overview

KITTI-360 Annotation Tool

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end. It is the annotation tool used to annotate the KITTI-360(TBD: paper link) dataset.

Dependences

sudo apt install python-pip
pip install jinja2
pip install cherrypy
sudo apt install sqlite3 libsqlite3-dev

Quick Demo

  • Download the data for the demo with the following command:
./download_demo_data.sh
  • Start the web server with the following command:
./run_demo.sh

Demo in Details

1. Setup the data

Prepare data and put it in public/data/, or you can create a symbolic link from where the data is to public/data/

2. Configure user-task assignment

The user and task data is kept in db_import/. Example files have been included in db_import/*.tmp.

  • users.txt

    Each line is one user information in the following order:

    Email Name UserId Password IsAdmin
    
  • taskLists.txt

    Each line is one user-task information in the following order:

    TaskId UserId Editable
    

    where Editable is a number indicating:

    Editable = 0: readonly (User can only view the annotation)

    Editable = 1: normal (User can view, annotate, and submit results)

    Editable = 2: playground (User can view, annotate, but not submit results)

Note: space is not allowed in each item. So use '_' or other characters to connect words

3. Setup database

Once the user/task file is setup based on the above rules, to set up database, run

python create_db.py

4. Setup the host and port address

Setup the host and port address in server.conf, here is an example:

[global]
server.socket_host = "127.0.0.1" # host to be modified
server.socket_port = 8080        # port to be modified (e.g. 2000)

5. Start the server

python labelApp.py

6. Load the web page

Type http://host:port in the browser to load the web page. For example in the demo the web app is started locally in http://127.0.0.1:8080.

7. Play with the labeling interface

Please find details of annotation instruction here.

8. Get annotation results

Annotation results are saved in xml file under public/results/. We provide util functions to parse the xml file in https://github.com/autonomousvision/kitti360Scripts/blob/master/kitti360scripts/helpers/annotation.py#L353.

Folder Structure

.(ROOT)
|
+-- assets
|   |
|   +-- css
|   |
|   +-- javascripts: javascript source code
|
+-- db: generated database (by running create_db.py)
|
+-- db_import
|    |
|    +-- user-task configuration files
|
+-- public
|    |
|    +-- backup: backup XML annotation files, which are automatically saved during annotation
|    |
|    +-- data: annotation data
|    |
|    +-- resource: resource files such as icon
|    |
|    +-- results: resultant XML annotation files
|    |
|    +-- mapping.txt: label mergining file
|    |
|    +-- colorList.txt: label color mapping file
|
+-- views: HTML pages

Common Problems and Solutions

Q1: "socket.error: (98, 'Address already in use')"

A1: Kill the existing processor and re-restart the server. To kill the existing processor:

  1. Run ps aux | grep python in command-line.

  2. Find the PID with user name = annot, and run sudo kill -9 PID.

Citing KITTI-360 Annotation Tool

If you find this code helpful in your research, please use the following BibTeX entry.

@article{Liao2021ARXIV, 
   title   = {{KITTI}-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D}, 
   author  = {Yiyi Liao and Jun Xie and Andreas Geiger}, 
   journal = {arXiv.org},
   volume  = {2109.13410},
   year    = {2021}, 
}

License


Copyright 2018 Autonomous Vision Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
Everything's Talkin': Pareidolia Face Reenactment (CVPR2021)

Everything's Talkin': Pareidolia Face Reenactment (CVPR2021) Linsen Song, Wayne Wu, Chaoyou Fu, Chen Qian, Chen Change Loy, and Ran He [Paper], [Video

71 Dec 21, 2022
This is an official implementation of the High-Resolution Transformer for Dense Prediction.

High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H

HRNet 403 Dec 13, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022