Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

Related tags

Deep Learningmetasdf
Overview

MetaSDF: Meta-learning Signed Distance Functions

Project Page | Paper | Data

Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely
Gordon Wetzstein
*denotes equal contribution

This is the official implementation of the paper "MetaSDF: Meta-Learning Signed Distance Functions".

In this paper, we show how we may effectively learn a prior over implicit neural representations using gradient-based meta-learning.

While in the paper, we show this for the special case of SDFs with the ReLU nonlinearity, this works formidably well with other types of neural implicit representations - such as our work "SIREN"!

We show you how in our Colab notebook:

Explore MetaSDF in Colab

DeepSDF

A large part of this codebase (directory "3D") is based on the code from the terrific paper "DeepSDF" - check them out!

Get started

If you only want to experiment with MetaSDF, we have written a colab that doesn't require installing anything, and goes through a few other interesting properties of MetaSDF as well - for instance, it turns out you can train SIREN to fit any image in only just three gradient descent steps!

If you want to reproduce all the experiments from the paper, you can then set up a conda environment with all dependencies like so:

conda env create -f environment.yml
conda activate metasdf

3D Experiments

Dataset Preprocessing

Before training a model, you'll first need to preprocess the training meshes. Please follow the preprocessing steps used by DeepSDF if using ShapeNet.

Define an Experiment

Next, you'll need to define the model and hyperparameters for your experiment. Examples are given in 3D/curriculums.py, but feel free to make modifications. Although not present in the original paper, we've included some curriculums with positional encodings and smaller models. These generally perform on par with the original models but require much less memory.

Train a Model

After you've preprocessed your data and have defined your curriculum, you're ready to start training! Navigate to the 3D/scripts directory and run

python run_train.py <curriculum name>.

If training is interupted, pass the flag --load flag to continue training from where you left off.

You should begin seeing printouts of loss, with a summary at every epoch. Checkpoints and Tensorboard summaries are saved to the 'output_dir' directory, as defined in your curriculum. We log raw loss, which is either the composite loss or L1 loss, depending on your experiment definition, as well as a 'Misclassified Percentage'. The 'Misclassified Percentage' is the percentage of samples that the model incorrectly classified as inside or outside the mesh.

Reconstructing Meshes

After training a model, recontruct some meshes using

python run_reconstruct.py <curriculum name> --checkpoint <checkpoint file name>.

The script will use the 'test_split' as defined in the curriculum.

Evaluating Reconstructions

After reconstructing meshes, calculate Chamfer Distances between reconstructions and ground-truth meshes by running

python run_eval.py <reconstruction dir>.

Torchmeta

We're using the excellent torchmeta to implement hypernetworks.

Citation

If you find our work useful in your research, please cite:

       @inproceedings{sitzmann2019metasdf,
            author = {Sitzmann, Vincent
                      and Chan, Eric R.
                      and Tucker, Richard
                      and Snavely, Noah
                      and Wetzstein, Gordon},
            title = {MetaSDF: Meta-Learning Signed
                     Distance Functions},
            booktitle = {Proc. NeurIPS},
            year={2020}
       }

Contact

If you have any questions, please feel free to email the authors.

Owner
Vincent Sitzmann
I'm researching 3D-structured neural scene representations. Ph.D. student in Stanford's Computational Imaging Group.
Vincent Sitzmann
OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

[Japanese/English] GrabCut-Annotation-Tool GrabCut-Annotation-Tool.mp4 OpenCVのGrabCut()を利用したアノテーションツールです。 セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。 ※Grab

KazuhitoTakahashi 30 Nov 18, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

1 Aug 09, 2022
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
A code implementation of AC-GC: Activation Compression with Guaranteed Convergence, in NeurIPS 2021.

Code For AC-GC: Lossy Activation Compression with Guaranteed Convergence This code is intended to be used as a supplemental material for submission to

Dave Evans 2 Nov 01, 2022
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"

Learning to Bootstrap for Combating Label Noise This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise

21 Apr 09, 2022