OpenCVのGrabCut()を利用したセマンティックセグメンテーション向けアノテーションツール(Annotation tool using GrabCut() of OpenCV. It can be used to create datasets for semantic segmentation.)

Overview

[Japanese/English]

GrabCut-Annotation-Tool

GrabCut-Annotation-Tool.mp4

OpenCVのGrabCut()を利用したアノテーションツールです。
セマンティックセグメンテーション向けのデータセット作成にご使用いただけます。
※GrabCutのアルゴリズムの都合上、境界がはっきりしているデータのアノテーションに向いています。

Requirement

  • opencv-python 4.5.2.54 or later
  • Pillow 7.2.0 or later
  • PySimpleGUI 4.32.1 or later

Directory

│  app.py
│  config.json
│  
├─core
│  │  gui.py
│  └─util.py
│          
├─input
│      
└─output
    ├─image
    └─annotation

app.py, core/gui.py, core/util.py

ソースコードです。

input

アノテーション対象の画像ファイルを格納するディレクトリです。

output

アノテーション結果を保存するディレクトリです。

  • image:リサイズした画像が格納されます
  • annotation:アノテーション結果が格納されます
    ※パレットモードのPNG形式で保存

Usage

次のコマンドで起動してください。

python app.py

起動時には以下オプションが指定可能です。

  • --input
    入力画像格納パス
    デフォルト:input
  • --output_image
    アノテーション結果(画像)の格納パス
    デフォルト:output/image
  • --output_annotation
    アノテーション結果(セグメンテーション画像)の格納パス
    デフォルト:output/annotation
  • --config
    ロードするコンフィグファイル
    デフォルト:config.json

Using GrabCut-Annotation-Tool

ファイル選択

ファイル一覧をクリックすることでアノテーション対象を切り替えることが出来ます。
ショートカットキー ↑、p:上のファイルへ ↓、n:下のファイルへ

初期ROI指定

「Select ROI」と表示されている時にマウス右ドラッグで初期ROIを指定できます。


ドラッグ終了後、GrabCut処理が行われます。


領域が選択されます。


後景指定

マウス右ドラッグで後景の指定が出来ます。




前景指定

「Manually label background」のチェックを外すことで前景指定に切り替えることが出来ます
ショートカットキー Ctrl


マウス右ドラッグで前景の指定が出来ます。




クラスID切り替え

Class IDのチェックボックスを押すことでクラスIDを切り替えることが出来ます。
一桁のIDはショートカットキーでの切り替えも可能です。
ショートカットキー 0-9


クラスID切り替え後はROI指定を行う必要があります。




自動保存

リサイズ画像とアノテーション画像はGrabCut処理毎に自動保存されます。


自動保存をしたくない場合は「Auto save」のチェックを外してください。
自動保存以外で保存したい場合は、キーボード「s」を押してください。


その他設定


  • Mask alpha:画像のマスク重畳表示の濃淡具合
  • Iteration:GrabCutアルゴリズムのイテレーション回数
  • Draw thickness:前景/後景指定時の線の太さ
  • Output width:出力画像の横幅
  • Output height:出力画像の縦幅

ToDo

  • メモリリーク対策
  • ROI選択時に左上→右下ドラッグ以外も可能にする
  • クラスIDをショートカットキーで選択した際にROI選択表示にする

Author

高橋かずひと(https://twitter.com/KzhtTkhs)

License

GrabCut-Annotation-Tool is under Apache-2.0 License.

サンプル画像はフリー素材ぱくたそ様の写真を利用しています。

You might also like...
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

Object detection using yolo-tiny model and opencv used as backend
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

A embed able annotation tool for end to end cross document co-reference
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

A graphical Semi-automatic annotation tool based on labelImg and Yolov5
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

Open source annotation tool for machine learning practitioners.
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

performing moving objects segmentation using image processing techniques with opencv and numpy
performing moving objects segmentation using image processing techniques with opencv and numpy

Moving Objects Segmentation On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced meth

Comments
  • Memory leak in PySimpleGUI Graph.

    Memory leak in PySimpleGUI Graph.

    core/gui.py

    You need to clear the canvas before using draw_image(). Otherwise, canvases will continue to be added and memory leaks will occur.

            self._window['-IMAGE ORIGINAL-'].draw_image(
                data=bytes_image,
                location=(0, imaga_height),
            )
    

    You need to call delete_figure() as follows:

            if self._graph_image_id is not None:
                self._window['-IMAGE ORIGINAL-'].delete_figure(self._graph_image_id)
    
            self._graph_image_id = self._window['-IMAGE ORIGINAL-'].draw_image(
                data=bytes_image,
                location=(0, imaga_height),
            )
    
    opened by Kazuhito00 1
  • WOW!  What an amazing program!

    WOW! What an amazing program!

    I stumbled onto your project the other day and had to look, multiple times, to see that it is a PySimpleGUI-based program. Very nicely done! Thanks for the great screenshots in your readme. I'm sure visitors are enjoying the show as much as I have.

    opened by PySimpleGUI 1
Releases(v0.1.3)
Owner
KazuhitoTakahashi
KazuhitoTakahashi
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Matias Godoy 148 Dec 29, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022