Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

Overview

face-mask-detection

Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scripts that provides training new model, testing model with specific images and live face mask detection.
The gif below shows how live face mask detection works.

Result gif

This model has trained with 10k face images (5k without mask and 5k with mask - dataset sources are mentioned in dataset section) using 3 layers of 2d CNN as main process. (the complete summary of model layers is given below)
Model: "sequential"                                               
_________________________________________________________________ 
Layer (type)                 Output Shape              Param #    
================================================================= 
rescaling (Rescaling)        (None, 180, 180, 3)       0          
_________________________________________________________________ 
conv2d (Conv2D)              (None, 180, 180, 16)      448        
_________________________________________________________________ 
max_pooling2d (MaxPooling2D) (None, 90, 90, 16)        0          
_________________________________________________________________ 
conv2d_1 (Conv2D)            (None, 90, 90, 32)        4640       
_________________________________________________________________ 
max_pooling2d_1 (MaxPooling2 (None, 45, 45, 32)        0          
_________________________________________________________________ 
conv2d_2 (Conv2D)            (None, 45, 45, 64)        18496      
_________________________________________________________________ 
max_pooling2d_2 (MaxPooling2 (None, 22, 22, 64)        0          
_________________________________________________________________ 
flatten (Flatten)            (None, 30976)             0          
_________________________________________________________________ 
dense (Dense)                (None, 128)               3965056    
_________________________________________________________________ 
dense_1 (Dense)              (None, 2)                 258        
================================================================= 
Total params: 3,988,898                                           
Trainable params: 3,988,898                                       
Non-trainable params: 0                                           
_________________________________________________________________ 

This model has reached fantastic result of 0.9990 accuracy with test dataset( 20% ). moreover, it only takes 10 epochs to reach this result. As the graph below illustrates, from the very first epoch, accuracy is more than 0.98 and by 10th epoch, loss roughly touchs 10e-7 that is a great result.

loss_acc

usage

Currently, there is not any argument parser available, so if you want change any default variable, you can change variables in configurations section at the begining of each script. schema is given below.

DATASET_PATH = "./dataset/" # to provide dataset, create a directory containing all classes as a directory
# and put images to relevant class. ex:
# dataset --> no_mask --> img1, img2, ...
#             correct_mask --> img1, img2, ...
OUTPUT_MODEL_PATH = 'saved_model/my_model' # output file to save model
OUTPUT_WEIGHTS_PATH = 'saved_weight/my_checkpoint2' # output file to save model's weights
EPOCHS = 10 # number of epochs
BATCH_SIZE = 32 # bach size
IMG_HEIGHT = 180 # image height
IMG_WIDTH = 180 # image width

To train a new model, after changing the configuration above, just run:

python train_model.py

To test the trained model with some specific images, run:

python test_model.py img1.jpg img2.jpg ....

At last, to run live detection mode, run:

python live_detection.py

dataset

The dataset we have used, is the combination of Flickr-Faces-HQ (FFHQ) dataset and MaskedFace-Net dataset. 5k images from each dataset. (summation of both datasets is more than 180k images)

You might also like...
Face Library is an open source package for accurate and real-time face detection and recognition
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation
PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation

PocketNet This is the official repository of the paper: PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and M

Releases(v0.1)
Owner
amirsalar
amirsalar
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
A knowledge base construction engine for richly formatted data

Fonduer is a Python package and framework for building knowledge base construction (KBC) applications from richly formatted data. Note that Fonduer is

HazyResearch 386 Dec 05, 2022
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
202 Jan 06, 2023
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022