GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

Overview

GazeScroller

Using Facial Movements to perform Hands-free Gesture on the system

Abstract

As our world is getting digitized on an fast rate, every person is having a device that is making life better. Also, there is a considerate amount of the society that do not have interactions as others to these devices. One such example are the quadriplegic people (people suffering from paralysis) which constitute to 5.4 million people people in the world*. Our aim here is to make them interact with the digital world. In this project, facial movements of the person's face is fed to the system on real-time and a certain list of operations can be performed on the system using these facial actions.Additionally, we will extend this system to mini-games on the internet like the Dino Game. Finally, I have evaluated the system by five people and found that they have positively to the system. These results imply that we can generalise this system to the entire world.

Approach

The project captures live stream of the video via webcam of the system. It then maps the face to 68 landmark points via the library Dlib. The movements of the points corresponding to the eye and nose are monitored continously. The functionalities covered in the project include : • Detect blink of one eye to enable/disable scrolling. • Detect the scroll movement based on the movement of the point on the nose. Using Blink to toggle scroll and head direction to scroll

Background Study

Blinking is an involuntary action of a human being.Blinks can be spontaneous, reflex and voluntary, and eye blink rate depends on various factors including environmental factors, type of activity.

In order to segregate natural blink of the eye with the intentional blink of one eye of the user for functionality 1 as discussed above, I have studied the eye width ratios of by conducting experiments study over 5 users with each subject testing for 10 times. This data analysis is used to understand to difference in the eye width ratio between both the eyes to when a user blinks one of the eye. Secondly, the intentional blink of the eye is put on a threshold for 3 frames to detect blink. These procedures helped detect the intentional one eye blink from the natural blink of the eyes. The information from the Fig 1 gives us the details of the eye ratio and the delta (difference between the eye ratios). We take the mean and use them as a reference in our code as threshold.

Technical Tools :

• Dlib - a library used to detect face per frame via webcam • Python - language to write the code • landmarksPoints.dat file - this file is used to superimpose landmarks onto the face detected. • pynput - library to invoke keyboard and mouse keys.

System Setup :

By using the tools of mentioned above, we get the face of the user per frame superimposed by landmark points. Calculations for each frame include :

rightEyeWidthRatio = height of the right eye/ width of the right eye leftEyeWidthRatio = height of the left eye/ width of the left eye delta = abs(leftEyeWidthRatio - rightEyeWidthRatio) Whenever a user blinks one eye, following cases are checked • Check 1 : if delta > threshold of delta taken from fig.1 • Check 2 : if leftEyeWidthRatio < threshold value of blink and frame count is 3. • If Check 1 and Check 2 true , trigger Blink and enable scrolling. UX Aspects : Trigger notifications in the system when scrolling is toggled.

Discussion & Future Scope:

In the present work I have not made much effort into perfectly the model and in CV. I have worked towards the thresholds and correlating to the use case I mentioned in the abstract. If substantial work is detecting the exact eye wink using ML models, the system would be much better. The false blinks being recorded is because we lack a model here. In the future scope , we can use this feature to build interactive games to the quadriplegic people to improve their psychological status too.

Conclusion :

All the subjects who have tested responded positively to the system and felt good about it. Therefore, we can say that our system is performing good to scroll pages using the nose and to capture the blink of the eye as a toggle gesture.

Hence, such a model will be beneficial to quadriplegic people and help them to interact with the digital world.Since the false blinks are low, the system is good to be used. It can be further perfected with ML models to give better accuracy to be used by the quadriplegic people.

Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"

Learning to Bootstrap for Combating Label Noise This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise

21 Apr 09, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Petros Christodoulou 4.7k Jan 04, 2023
An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022