Combining Diverse Feature Priors

Related tags

Deep Learningcopriors
Overview

Combining Diverse Feature Priors

This repository contains code for reproducing the results of our paper.

Paper: https://arxiv.org/abs/2110.08220

Blog Post: http://gradientscience.org/copriors/

Important files:

Scripts:
  pretrain_model.py: a script to pre-train the models on just the labeled data
  cotrain.py: a script to co-train pretrained model(s)
  sweep_final_models.py: a script to evaluate intermediate eras for a previously run cotrain
  
File Structure:
  datasets:
    datasets.py: the definition of the labeled/unlabeled/validation/test sets for our datasets
    transforms.py: describes the different prior transforms and spurious tinting
    co_training.py: contains the logic for model pre-training and co-training
   models:
    bagnet_custom.py: the architecture for the bagnets used in this paper
    model_utils.py: utilities for loading and building models

To generate the pre-trained priors, run:

python pretrain_model.py --dataset <DATASET NAME> --data-path <DATA PATH> --use_val --out-dir <OUTPUT PATH NAME> --arch <ARCHITECTURE NAME> --epochs 300 --lr <LR> --step_lr <STEP LR> --step_lr_gamma <STEP LR GAMMA> --additional-transform <TRANSFORM TYPE>

datasets: STLSub10, cifarsmallsub, celebaskewed 
data-path: use torchvision datasets from https://pytorch.org/vision/stable/index.html
use-val: determines whether to use validation or test set for tensorboard metrics
arch: vgg16_bn, bagnetcustom32 (bagnet for CIFAR), bagnetcustom96thin (bagnet for celeba/stl10)
lr, step-lr, step-lr-gamma are hyperparameters who's exact values can be found in our appendix.
additional-transform: which prior to use. possibilities are NONE, CANNY, SOBEL (use NONE and a bagnet architecture for the bagnet prior)

Add --spurious TINT to train with a tint (as in the tinted STL-10 experiments)

After generating the priors, the models can be self (include one prior directory) or co-trained (include both prior directories) by running:

python cotrain.py --dataset <DATASET NAME> --data-path <DATA PATH> --out-dir <OUTPUT PATH> --input-dirs <PRIOR DIRECTORY 1> --input-dirs <PRIOR DIRECTORY 2> --epochs_per_era 300 --fraction 0.05 --eras 20 --epochs 400 --arch vgg16_bn --additional-transform NONE --lr <LR> --step_lr <STEP LR> --step_lr_gamma <STEP LR GAMMA> --strategy STANDARD_CONSTANT 

This command will self/co-train the input prior directories, saving a checkpoint for each era, and then finally train a standard model on the pseudo-labels after the eras are complete.

To use the pure co-training strategy, add --pure
To use tinting as in the STL-10 tinting experiments
Owner
Madry Lab
Towards a Principled Science of Deep Learning
Madry Lab
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
MIMIC Code Repository: Code shared by the research community for the MIMIC-III database

MIMIC Code Repository The MIMIC Code Repository is intended to be a central hub for sharing, refining, and reusing code used for analysis of the MIMIC

MIT Laboratory for Computational Physiology 1.8k Dec 26, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Young-Seok Choi 23 Jan 25, 2022
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022