Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

Overview

counterfactual-tpp

This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes.

Pre-requisites

This code depends on the following packages:

  1. networkx
  2. numpy
  3. pandas
  4. matplotlib

to generate map plots:

  1. GeoPandas
  2. geoplot

Code structure

  • src/counterfactual_tpp.py: Contains the code to sample rejected events using the superposition property and the algorithm to calculate the counterfactuals.
  • src/gumbel.py: Contains the utility functions for the Gumbel-Max SCM.
  • src/sampling_utils.py: Contains the code for the Lewis' thinning algorithm (thinning_T function) and some other sampling utilities.
  • src/hawkes/hawkes.py: Contains the code for sampling from the hawkes process using the superposition property of tpps. It also includes the algorithm for sampling a counterfactual sequence of events given a sequence of observed events for a Hawkes process.
  • src/hawkes/hawkes_example.ipynb: Contains an example of running algorithm 3 (in the paper) for both cases where we have (1) both observed and un-observed events, and (2) the case that we have only the observed events.
  • ebola/graph_generation.py: Contains code to build the Ebola network based on the network of connected districts. This code is adopted from the disease-control project.
  • ebola/dynamics.py: Contains code for sampling counterfactual sequence of infections given a sequence of observed infections from the SIR porcess (the calculate_counterfactual function). The rest of the code is adopted from the disease-control project, which simulates continuous-time SIR epidemics with exponentially distributed inter-event times.

The directory ebola/data/ebola contains the information about the Ebola network adjanceny matrix and the cleaned ebola outbreak data adopted from the disease-control project.

The directory ebola/map/geojson contains the geographical information of the districts studied in the Ebola outbreak dataset. The geojson files are obtained from Nominatim.

The directory ebola/map/overall_data contains data for generating the geographical maps in the paper, and includs the overall number of infection under applying different interventions.

The directories src/data_hawkes and src/data_inhomogeneous contain observational data used to generate Synthetic plots in the paper. You can use this data to re-generate paper's plots. Otherwise, you can simply generate new random samples by the code.

Experiments

Synthetic

Epidemiological

Citation

If you use parts of the code in this repository for your own research, please consider citing:

@article{noorbakhsh2021counterfactual,
        title={Counterfactual Temporal Point Processes},
        author={Noorbakhsh, Kimia and Gomez-Rodriguez, Manuel},
        journal={arXiv preprint arXiv:2111.07603},
        year={2021}
}
Owner
Networks Learning
Networks Learning group at MPI-SWS
Networks Learning
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022