Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Overview

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

This is a Pytorch-Lightning implementation of the paper "Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks".

Given a sequence of P past point clouds (left in red) at time T, the goal is to predict the F future scans (right in blue).

Table of Contents

  1. Publication
  2. Data
  3. Installation
  4. Download
  5. License

Overview of our architecture

Publication

If you use our code in your academic work, please cite the corresponding paper:

@inproceedings{mersch2021corl,
  author = {B. Mersch and X. Chen and J. Behley and C. Stachniss},
  title = {{Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks}},
  booktitle = {Proc.~of the Conf.~on Robot Learning (CoRL)},
  year = {2021},
}

Data

Download the Kitti Odometry data from the official website.

Installation

Source Code

Clone this repository and run

cd point-cloud-prediction
git submodule update --init

to install the Chamfer distance submodule. The Chamfer distance submodule is originally taken from here with some modifications to use it as a submodule. All parameters are stored in config/parameters.yaml.

Dependencies

In this project, we use CUDA 10.2. All other dependencies are managed with Python Poetry and can be found in the poetry.lock file. If you want to use Python Poetry (recommended), install it with:

curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/install-poetry.py | python -

Install Python dependencies with Python Poetry

poetry install

and activate the virtual environment in the shell with

poetry shell

Export Environment Variables to dataset

We process the data in advance to speed up training. The preprocessing is automatically done if GENERATE_FILES is set to true in config/parameters.yaml. The environment variable PCF_DATA_RAW points to the directory containing the train/val/test sequences specified in the config file. It can be set with

export PCF_DATA_RAW=/path/to/kitti-odometry/dataset/sequences

and the destination of the processed files PCF_DATA_PROCESSED is set with

export PCF_DATA_PROCESSED=/desired/path/to/processed/data/

Training

Note If you have not pre-processed the data yet, you need to set GENERATE_FILES: True in config/parameters.yaml. After that, you can set GENERATE_FILES: False to skip this step.

The training script can be run by

python pcf/train.py

using the parameters defined in config/parameters.yaml. Pass the flag --help if you want to see more options like resuming from a checkpoint or initializing the weights from a pre-trained model. A directory will be created in pcf/runs which makes it easier to discriminate between different runs and to avoid overwriting existing logs. The script saves everything like the used config, logs and checkpoints into a path pcf/runs/COMMIT/EXPERIMENT_DATE_TIME consisting of the current git commit ID (this allows you to checkout at the last git commit used for training), the specified experiment ID (pcf by default) and the date and time.

Example: pcf/runs/7f1f6d4/pcf_20211106_140014

7f1f6d4: Git commit ID

pcf_20211106_140014: Experiment ID, date and time

Testing

Test your model by running

python pcf/test.py -m COMMIT/EXPERIMENT_DATE_TIME

where COMMIT/EXPERIMENT_DATE_TIME is the relative path to your model in pcf/runs. Note: Use the flag -s if you want to save the predicted point clouds for visualiztion and -l if you want to test the model on a smaller amount of data.

Example

python pcf/test.py -m 7f1f6d4/pcf_20211106_140014

or

python pcf/test.py -m 7f1f6d4/pcf_20211106_140014 -l 5 -s

if you want to test the model on 5 batches and save the resulting point clouds.

Visualization

After passing the -s flag to the testing script, the predicted range images will be saved as .svg files in /pcf/runs/COMMIT/EXPERIMENT_DATE_TIME/range_view_predictions. The predicted point clouds are saved to /pcf/runs/COMMIT/EXPERIMENT_DATE_TIME/test/point_clouds. You can visualize them by running

python pcf/visualize.py -p /pcf/runs/COMMIT/EXPERIMENT_DATE_TIME/test/point_clouds

Five past and five future ground truth and our five predicted future range images.

Last received point cloud at time T and the predicted next 5 future point clouds. Ground truth points are shown in red and predicted points in blue.

Download

You can download our best performing model from the paper here. Just extract the zip file into pcf/runs.

License

This project is free software made available under the MIT License. For details see the LICENSE file.

Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Seokeon Choi 35 Oct 26, 2022
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022