Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Overview

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

This is a Pytorch-Lightning implementation of the paper "Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks".

Given a sequence of P past point clouds (left in red) at time T, the goal is to predict the F future scans (right in blue).

Table of Contents

  1. Publication
  2. Data
  3. Installation
  4. Download
  5. License

Overview of our architecture

Publication

If you use our code in your academic work, please cite the corresponding paper:

@inproceedings{mersch2021corl,
  author = {B. Mersch and X. Chen and J. Behley and C. Stachniss},
  title = {{Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks}},
  booktitle = {Proc.~of the Conf.~on Robot Learning (CoRL)},
  year = {2021},
}

Data

Download the Kitti Odometry data from the official website.

Installation

Source Code

Clone this repository and run

cd point-cloud-prediction
git submodule update --init

to install the Chamfer distance submodule. The Chamfer distance submodule is originally taken from here with some modifications to use it as a submodule. All parameters are stored in config/parameters.yaml.

Dependencies

In this project, we use CUDA 10.2. All other dependencies are managed with Python Poetry and can be found in the poetry.lock file. If you want to use Python Poetry (recommended), install it with:

curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/install-poetry.py | python -

Install Python dependencies with Python Poetry

poetry install

and activate the virtual environment in the shell with

poetry shell

Export Environment Variables to dataset

We process the data in advance to speed up training. The preprocessing is automatically done if GENERATE_FILES is set to true in config/parameters.yaml. The environment variable PCF_DATA_RAW points to the directory containing the train/val/test sequences specified in the config file. It can be set with

export PCF_DATA_RAW=/path/to/kitti-odometry/dataset/sequences

and the destination of the processed files PCF_DATA_PROCESSED is set with

export PCF_DATA_PROCESSED=/desired/path/to/processed/data/

Training

Note If you have not pre-processed the data yet, you need to set GENERATE_FILES: True in config/parameters.yaml. After that, you can set GENERATE_FILES: False to skip this step.

The training script can be run by

python pcf/train.py

using the parameters defined in config/parameters.yaml. Pass the flag --help if you want to see more options like resuming from a checkpoint or initializing the weights from a pre-trained model. A directory will be created in pcf/runs which makes it easier to discriminate between different runs and to avoid overwriting existing logs. The script saves everything like the used config, logs and checkpoints into a path pcf/runs/COMMIT/EXPERIMENT_DATE_TIME consisting of the current git commit ID (this allows you to checkout at the last git commit used for training), the specified experiment ID (pcf by default) and the date and time.

Example: pcf/runs/7f1f6d4/pcf_20211106_140014

7f1f6d4: Git commit ID

pcf_20211106_140014: Experiment ID, date and time

Testing

Test your model by running

python pcf/test.py -m COMMIT/EXPERIMENT_DATE_TIME

where COMMIT/EXPERIMENT_DATE_TIME is the relative path to your model in pcf/runs. Note: Use the flag -s if you want to save the predicted point clouds for visualiztion and -l if you want to test the model on a smaller amount of data.

Example

python pcf/test.py -m 7f1f6d4/pcf_20211106_140014

or

python pcf/test.py -m 7f1f6d4/pcf_20211106_140014 -l 5 -s

if you want to test the model on 5 batches and save the resulting point clouds.

Visualization

After passing the -s flag to the testing script, the predicted range images will be saved as .svg files in /pcf/runs/COMMIT/EXPERIMENT_DATE_TIME/range_view_predictions. The predicted point clouds are saved to /pcf/runs/COMMIT/EXPERIMENT_DATE_TIME/test/point_clouds. You can visualize them by running

python pcf/visualize.py -p /pcf/runs/COMMIT/EXPERIMENT_DATE_TIME/test/point_clouds

Five past and five future ground truth and our five predicted future range images.

Last received point cloud at time T and the predicted next 5 future point clouds. Ground truth points are shown in red and predicted points in blue.

Download

You can download our best performing model from the paper here. Just extract the zip file into pcf/runs.

License

This project is free software made available under the MIT License. For details see the LICENSE file.

Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023