Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Overview

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

This is a Pytorch-Lightning implementation of the paper "Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks".

Given a sequence of P past point clouds (left in red) at time T, the goal is to predict the F future scans (right in blue).

Table of Contents

  1. Publication
  2. Data
  3. Installation
  4. Download
  5. License

Overview of our architecture

Publication

If you use our code in your academic work, please cite the corresponding paper:

@inproceedings{mersch2021corl,
  author = {B. Mersch and X. Chen and J. Behley and C. Stachniss},
  title = {{Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks}},
  booktitle = {Proc.~of the Conf.~on Robot Learning (CoRL)},
  year = {2021},
}

Data

Download the Kitti Odometry data from the official website.

Installation

Source Code

Clone this repository and run

cd point-cloud-prediction
git submodule update --init

to install the Chamfer distance submodule. The Chamfer distance submodule is originally taken from here with some modifications to use it as a submodule. All parameters are stored in config/parameters.yaml.

Dependencies

In this project, we use CUDA 10.2. All other dependencies are managed with Python Poetry and can be found in the poetry.lock file. If you want to use Python Poetry (recommended), install it with:

curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/install-poetry.py | python -

Install Python dependencies with Python Poetry

poetry install

and activate the virtual environment in the shell with

poetry shell

Export Environment Variables to dataset

We process the data in advance to speed up training. The preprocessing is automatically done if GENERATE_FILES is set to true in config/parameters.yaml. The environment variable PCF_DATA_RAW points to the directory containing the train/val/test sequences specified in the config file. It can be set with

export PCF_DATA_RAW=/path/to/kitti-odometry/dataset/sequences

and the destination of the processed files PCF_DATA_PROCESSED is set with

export PCF_DATA_PROCESSED=/desired/path/to/processed/data/

Training

Note If you have not pre-processed the data yet, you need to set GENERATE_FILES: True in config/parameters.yaml. After that, you can set GENERATE_FILES: False to skip this step.

The training script can be run by

python pcf/train.py

using the parameters defined in config/parameters.yaml. Pass the flag --help if you want to see more options like resuming from a checkpoint or initializing the weights from a pre-trained model. A directory will be created in pcf/runs which makes it easier to discriminate between different runs and to avoid overwriting existing logs. The script saves everything like the used config, logs and checkpoints into a path pcf/runs/COMMIT/EXPERIMENT_DATE_TIME consisting of the current git commit ID (this allows you to checkout at the last git commit used for training), the specified experiment ID (pcf by default) and the date and time.

Example: pcf/runs/7f1f6d4/pcf_20211106_140014

7f1f6d4: Git commit ID

pcf_20211106_140014: Experiment ID, date and time

Testing

Test your model by running

python pcf/test.py -m COMMIT/EXPERIMENT_DATE_TIME

where COMMIT/EXPERIMENT_DATE_TIME is the relative path to your model in pcf/runs. Note: Use the flag -s if you want to save the predicted point clouds for visualiztion and -l if you want to test the model on a smaller amount of data.

Example

python pcf/test.py -m 7f1f6d4/pcf_20211106_140014

or

python pcf/test.py -m 7f1f6d4/pcf_20211106_140014 -l 5 -s

if you want to test the model on 5 batches and save the resulting point clouds.

Visualization

After passing the -s flag to the testing script, the predicted range images will be saved as .svg files in /pcf/runs/COMMIT/EXPERIMENT_DATE_TIME/range_view_predictions. The predicted point clouds are saved to /pcf/runs/COMMIT/EXPERIMENT_DATE_TIME/test/point_clouds. You can visualize them by running

python pcf/visualize.py -p /pcf/runs/COMMIT/EXPERIMENT_DATE_TIME/test/point_clouds

Five past and five future ground truth and our five predicted future range images.

Last received point cloud at time T and the predicted next 5 future point clouds. Ground truth points are shown in red and predicted points in blue.

Download

You can download our best performing model from the paper here. Just extract the zip file into pcf/runs.

License

This project is free software made available under the MIT License. For details see the LICENSE file.

Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
Pyramid Scene Parsing Network, CVPR2017.

Pyramid Scene Parsing Network by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page. Introduction This

Hengshuang Zhao 1.5k Jan 05, 2023
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022