NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

Overview

Checks Forks Issues Pull requests Contributors License

NL-Augmenter 🦎 🐍

The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformations augment text datasets in diverse ways, including: randomizing names and numbers, changing style/syntax, paraphrasing, KB-based paraphrasing ... and whatever creative augmentation you contribute. We invite submissions of transformations to this framework by way of GitHub pull request, through August 31, 2021. All submitters of accepted transformations (and filters) will be included as co-authors on a paper announcing this framework.

The framework organizers can be contacted at [email protected].

Submission timeline

Due date Description
A̶u̶g̶u̶s̶t̶ 3̶1̶, 2̶0̶2̶1̶ P̶u̶l̶l̶ r̶e̶q̶u̶e̶s̶t̶ m̶u̶s̶t̶ b̶e̶ o̶p̶e̶n̶e̶d̶ t̶o̶ b̶e̶ e̶l̶i̶g̶i̶b̶l̶e̶ f̶o̶r̶ i̶n̶c̶l̶u̶s̶i̶o̶n̶ i̶n̶ t̶h̶e̶ f̶r̶a̶m̶e̶w̶o̶r̶k̶ a̶n̶d̶ a̶s̶s̶o̶c̶i̶a̶t̶e̶d̶ p̶a̶p̶e̶r̶
September 2̶2̶, 30 2021 Review process for pull request above must be complete

A transformation can be revised between the pull request submission and pull request merge deadlines. We will provide reviewer feedback to help with the revisions.

The transformations which are already accepted to NL-Augmenter are summarized in the transformations folder. Transformations undergoing review can be seen as pull requests.

Table of contents

Colab notebook

Open In Colab To quickly see transformations and filters in action, run through our colab notebook.

Some Ideas for Transformations

If you need inspiration for what transformations to implement, check out https://github.com/GEM-benchmark/NL-Augmenter/issues/75, where some ideas and previous papers are discussed. So far, contributions have focused on morphological inflections, character level changes, and random noise. The best new pull requests will be dissimilar from these existing contributions.

Installation

Requirements

  • Python 3.7

Instructions

# When creating a new transformation, replace this with your forked repository (see below)
git clone https://github.com/GEM-benchmark/NL-Augmenter.git
cd NL-Augmenter
python setup.py sdist
pip install -e .
pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0.tar.gz

How do I create a transformation?

Setup

First, fork the repository in GitHub! 🍴

fork button

Your fork will have its own location, which we will call PATH_TO_YOUR_FORK. Next, clone the forked repository and create a branch for your transformation, which here we will call my_awesome_transformation:

git clone $PATH_TO_YOUR_FORK
cd NL-Augmenter
git checkout -b my_awesome_transformation

We will base our transformation on an existing example. Create a new transformation directory by copying over an existing transformation. You can choose to copy from other transformation directories depending on the task you wish to create a transformation for. Check some of the existing pull requests and merged transformations first to avoid duplicating efforts or creating transformations too similar to previous ones.

cd transformations/
cp -r butter_fingers_perturbation my_awesome_transformation
cd my_awesome_transformation

Creating a transformation

  1. In the file transformation.py, rename the class ButterFingersPerturbation to MyAwesomeTransformation and choose one of the interfaces from the interfaces/ folder. See the full list of options here.
  2. Now put all your creativity in implementing the generate method. If you intend to use external libraries, add them with their version numbers in requirements.txt
  3. Update my_awesome_transformation/README.md to describe your transformation.

Testing and evaluating (Optional)

Once you are done, add at least 5 example pairs as test cases in the file test.json so that no one breaks your code inadvertently.

Once the transformation is ready, test it:

pytest -s --t=my_awesome_transformation

If you would like to evaluate your transformation against a common 🤗 HuggingFace model, we encourage you to check evaluation

Code Styling To standardized the code we use the black code formatter which will run at the time of pre-commit. To use the pre-commit hook, install pre-commit with pip install pre-commit (should already be installed if you followed the above instructions). Then run pre-commit install to install the hook. On future commits, you should see the black code formatter is run on all python files you've staged for commit.

Submitting

Once the tests pass and you are happy with the transformation, submit them for review. First, commit and push your changes:

git add transformations/my_awesome_transformation/*
git commit -m "Added my_awesome_transformation"
git push --set-upstream origin my_awesome_transformation

Finally, submit a pull request. The last git push command prints a URL that can be copied into a browser to initiate such a pull request. Alternatively, you can do so from the GitHub website.

pull request button

Congratulations, you've submitted a transformation to NL-Augmenter!

How do I create a filter?

We also accept pull-requests for creating filters which identify interesting subpopulations of a dataset. The process to add a new filter is just the same as above. All filter implementations require implementing .filter instead of .generate and need to be placed in the filters folder. So, just the way transformations can transform examples of text, filters can identify whether an example follows some pattern of text! The only difference is that while transformations return another example of the same input format, filters simply return True or False! For step-by-step instructions, follow these steps.

BIG-Bench 🪑

If you are interested in NL-Augmenter, you may also be interested in the BIG-bench large scale collaborative benchmark for language models.

Most Creative Implementations 🏆

After all pull-requests have been merged, 3 of the most creative implementations would be selected and featured on this README page and on the NL-Augmenter webpage.

License

Some transformations include components released under a different (permissive, open source) license. For license details, refer to the README.md and any license files in the transformations's or filter's directory.

Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Blind visual quality assessment on 360° Video based on progressive learning

Blind visual quality assessment on omnidirectional or 360 video (ProVQA) Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and V

5 Jan 06, 2023
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022