基于DouZero定制AI实战欢乐斗地主

Overview

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战

Logo

  • 本项目基于DouZero
  • 环境配置请移步项目DouZero
  • 模型默认为WP,更换模型请修改start.py中的模型路径
  • 运行main.py即可
  • SL (baselines/sl/): 基于人类数据进行深度学习的预训练模型
  • DouZero-ADP (baselines/douzero_ADP/): 以平均分数差异(Average Difference Points, ADP)为目标训练的Douzero智能体
  • DouZero-WP (baselines/douzero_WP/): 以胜率(Winning Percentage, WP)为目标训练的Douzero智能体

说明

  • 将玩家角色设置为AI,需开局时手动输入玩家角色、初始手牌、三张底牌
  • 每轮手动输入其他两位玩家出的牌,AI给出出牌建议以及预计胜率
  • 暂未设计可视化界面,正考虑通过截屏自动识别开局手牌。
  • 欢乐斗地主窗口模式最大化运行,屏幕分辨率1920x1080。由于设计像素级操作,运行出错请检查截图区域坐标(位于MyPyQT_Form类中的__init__函数内)
  • 窗口移至右下角,避免遮挡手牌,历史牌,底牌区域。

使用步骤

  1. 确认环境正常,等待手牌出现、底牌出现、地主角色确认后,点击开始,耗时几秒完成识别。
  2. 窗口内显示识别结果,地主角色使用淡红色标出。识别完成自动开始记录出牌。
  3. 观察AI建议的出牌,在游戏中手动选择并打出。
  4. 游戏结束后弹出对话框提示输赢。
  5. 识别错误或无反应可通过结束按钮停止本局。至于游戏,就自己手动打完吧。

潜在Bug

  • 王炸时出牌特效时间较长,有一定几率导致只能识别出一个王。

鸣谢

  • 本项目基于DouZero
  • 借鉴了cardRecorder项目的部分代码以及模板图片,用于识别扑克牌

相关链接

Comments
  • 请问这是我的设置问题吗

    请问这是我的设置问题吗

    我首先按照要求安装了所需依赖,进入对局点击开始后提示输出

    等待下家出牌 等待下家出牌 等待下家出牌

    下家出牌: 44333 Traceback (most recent call last): File "c:\Users\11984\Downloads\DouZero_For_HappyDouDiZhu-master\main.py", line 170, in init_cards self.start() File "c:\Users\11984\Downloads\DouZero_For_HappyDouDiZhu-master\main.py", line 226, in start
    self.env.step(self.user_position, self.other_played_cards_env) TypeError: step() takes 1 positional argument but 3 were given

    以上这样的报错 图形界面卡死,图片附上

    report

    opened by jiahao2333 4
  • 开始以后闪退

    开始以后闪退

    看记录好像能识别出手牌,麻烦帮忙看看是为什么

    F:\Desktop\DouZero_For_HappyDouDiZhu-2.0>python main.py {'three_landlord_cards': [9, 8, 3], 'landlord_up': [17, 17, 14, 14, 13, 13, 12, 12, 10, 9, 8, 7, 7, 6, 5, 4, 3], 'landlord': [9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 14, 14, 17, 17, 20, 30], 'landlord_down': [3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8]} Traceback (most recent call last): File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git_init_.py", line 83, in refresh() File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git_init_.py", line 73, in refresh if not Git.refresh(path=path): File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git\cmd.py", line 287, in refresh raise ImportError(err) ImportError: Bad git executable. The git executable must be specified in one of the following ways: - be included in your $PATH - be set via $GIT_PYTHON_GIT_EXECUTABLE - explicitly set via git.refresh()

    All git commands will error until this is rectified.

    This initial warning can be silenced or aggravated in the future by setting the $GIT_PYTHON_REFRESH environment variable. Use one of the following values: - quiet|q|silence|s|none|n|0: for no warning or exception - warn|w|warning|1: for a printed warning - error|e|raise|r|2: for a raised exception

    Example: export GIT_PYTHON_REFRESH=quiet

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "main.py", line 164, in init_cards ai_players[1] = DeepAgent(self.user_position, self.card_play_model_path_dict[self.user_position]) File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\evaluation\deep_agent.py", line 25, in init self.model = load_model(position, model_path) File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\evaluation\deep_agent.py", line 7, in load_model from douzero.dmc.models import model_dict File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\dmc_init.py", line 1, in from .dmc import train File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\dmc\dmc.py", line 12, in from .file_writer import FileWriter File "F:\Desktop\DouZero_For_HappyDouDiZhu-2.0\douzero\dmc\file_writer.py", line 25, in import git File "C:\Users\liule\AppData\Local\Programs\Python\Python38\lib\site-packages\git_init.py", line 85, in raise ImportError('Failed to initialize: {0}'.format(exc)) ImportError: Failed to initialize: Bad git executable. The git executable must be specified in one of the following ways: - be included in your $PATH - be set via $GIT_PYTHON_GIT_EXECUTABLE - explicitly set via git.refresh()

    All git commands will error until this is rectified.

    This initial warning can be silenced or aggravated in the future by setting the $GIT_PYTHON_REFRESH environment variable. Use one of the following values: - quiet|q|silence|s|none|n|0: for no warning or exception - warn|w|warning|1: for a printed warning - error|e|raise|r|2: for a raised exception

    Example: export GIT_PYTHON_REFRESH=quiet

    opened by 0xbba 3
  • 区域坐标能否解答下?

    区域坐标能否解答下?

    self.MyHandCardsPos = (414, 804, 1041, 59)  # 我的截图区域
            self.LPlayedCardsPos = (530, 470, 380, 160)  # 左边截图区域
            self.RPlayedCardsPos = (1010, 470, 380, 160)  # 右边截图区域
            self.LandlordFlagPos = [(1320, 300, 110, 140), (320, 720, 110, 140), (500, 300, 110, 140)]  # 地主标志截图区域(右-我-左)
            self.ThreeLandlordCardsPos = (817, 36, 287, 136)      # 地主底牌截图区域,resize成349x168
    

    我怎么用坐标拾取工具对比了下发现完全不对

    opened by daofeng2015 1
  • 由于分辨率导致的牌面识别瓶颈改进意见

    由于分辨率导致的牌面识别瓶颈改进意见

    使用win32gui库对游戏窗口进行坐标(0,0)、尺寸(默认尺寸)自动固定,如下: win32gui.SetWindowPos(hwnd, win32con.HWND_NOTOPMOST, 0, 0, 1440, 838, win32con.SWP_SHOWWINDOW)

    然后在此基础上制作配套pics,可极大降低由分辨率问题引起的各类找图问题。

    opened by null119 0
  • pos_duge报错

    pos_duge报错

    [ WARN:[email protected]] global D:\a\opencv-python\opencv-python\opencv\modules\imgcodecs\src\loadsave.cpp (239) cv::findDecoder imread_('QQ截图20220507102631.png'): can't open/read file: check file path/integrity Traceback (most recent call last): File "G:/python/code_py/douzero_huanledoudizhu/DouZero_For_HappyDouDiZhu/pos_debug.py", line 25, in cv2.imshow("test", img) cv2.error: OpenCV(4.5.5) D:\a\opencv-python\opencv-python\opencv\modules\imgproc\src\color.cpp:182: error: (-215:Assertion failed) !_src.empty() in function 'cv::cvtColor' 想问一下这是什么情况

    opened by fengmianchen 0
Releases(v2.0)
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios

TPH-YOLOv5 This repo is the implementation of "TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured

cv516Buaa 439 Dec 22, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022