Vector Quantization, in Pytorch

Overview

Vector Quantization - Pytorch

A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a package. It uses exponential moving averages to update the dictionary.

VQ has been successfully used by Deepmind and OpenAI for high quality generation of images (VQ-VAE-2) and music (Jukebox).

Install

$ pip install vector-quantize-pytorch

Usage

import torch
from vector_quantize_pytorch import VectorQuantize

vq = VectorQuantize(
    dim = 256,
    codebook_size = 512,     # codebook size
    decay = 0.8,             # the exponential moving average decay, lower means the dictionary will change faster
    commitment = 1.          # the weight on the commitment loss
)

x = torch.randn(1, 1024, 256)
quantized, indices, commit_loss = vq(x) # (1, 1024, 256), (1, 1024), (1)

Variants

This paper proposes to use multiple vector quantizers to recursively quantize the residuals of the waveform. You can use this with the ResidualVQ class and one extra initialization parameter.

import torch
from vector_quantize_pytorch import ResidualVQ

residual_vq = ResidualVQ(
    dim = 256,
    num_quantizers = 8,      # specify number of quantizers
    codebook_size = 1024,    # codebook size
)

x = torch.randn(1, 1024, 256)
quantized, indices, commit_loss = residual_vq(x)

# (1, 1024, 256), (8, 1, 1024), (8, 1)
# (batch, seq, dim), (quantizer, batch, seq), (quantizer, batch)

Initialization

The SoundStream paper proposes that the codebook should be initialized by the kmeans centroids of the first batch. You can easily turn on this feature with one flag kmeans_init = True, for either VectorQuantize or ResidualVQ class

import torch
from vector_quantize_pytorch import ResidualVQ

residual_vq = ResidualVQ(
    dim = 256,
    codebook_size = 256,
    num_quantizers = 4,
    kmeans_init = True,   # set to True
    kmeans_iters = 10     # number of kmeans iterations to calculate the centroids for the codebook on init
)

x = torch.randn(1, 1024, 256)
quantized, indices, commit_loss = residual_vq(x)

Increasing codebook usage

This repository will contain a few techniques from various papers to combat "dead" codebook entries, which is a common problem when using vector quantizers.

Lower codebook dimension

The Improved VQGAN paper proposes to have the codebook kept in a lower dimension. The encoder values are projected down before being projected back to high dimensional after quantization. You can set this with the codebook_dim hyperparameter.

import torch
from vector_quantize_pytorch import VectorQuantize

vq = VectorQuantize(
    dim = 256,
    codebook_size = 256,
    codebook_dim = 16      # paper proposes setting this to 32 or as low as 8 to increase codebook usage
)

x = torch.randn(1, 1024, 256)
quantized, indices, commit_loss = vq(x)

Cosine similarity

The Improved VQGAN paper also proposes to l2 normalize the codes and the encoded vectors, which boils down to using cosine similarity for the distance. They claim enforcing the vectors on a sphere leads to improvements in code usage and downstream reconstruction. You can turn this on by setting use_cosine_sim = True

import torch
from vector_quantize_pytorch import VectorQuantize

vq = VectorQuantize(
    dim = 256,
    codebook_size = 256,
    use_cosine_sim = True   # set this to True
)

x = torch.randn(1, 1024, 256)
quantized, indices, commit_loss = vq(x)

Expiring stale codes

Finally, the SoundStream paper has a scheme where they replace codes that have hits below a certain threshold with randomly selected vector from the current batch. You can set this threshold with threshold_ema_dead_code keyword.

import torch
from vector_quantize_pytorch import VectorQuantize

vq = VectorQuantize(
    dim = 256,
    codebook_size = 512,
    threshold_ema_dead_code = 2  # should actively replace any codes that have an exponential moving average cluster size less than 2
)

x = torch.randn(1, 1024, 256)
quantized, indices, commit_loss = vq(x)

Citations

@misc{oord2018neural,
    title   = {Neural Discrete Representation Learning},
    author  = {Aaron van den Oord and Oriol Vinyals and Koray Kavukcuoglu},
    year    = {2018},
    eprint  = {1711.00937},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
@misc{zeghidour2021soundstream,
    title   = {SoundStream: An End-to-End Neural Audio Codec},
    author  = {Neil Zeghidour and Alejandro Luebs and Ahmed Omran and Jan Skoglund and Marco Tagliasacchi},
    year    = {2021},
    eprint  = {2107.03312},
    archivePrefix = {arXiv},
    primaryClass = {cs.SD}
}
@inproceedings{anonymous2022vectorquantized,
    title   = {Vector-quantized Image Modeling with Improved {VQGAN}},
    author  = {Anonymous},
    booktitle = {Submitted to The Tenth International Conference on Learning Representations },
    year    = {2022},
    url     = {https://openreview.net/forum?id=pfNyExj7z2},
    note    = {under review}
}
Comments
  • Quantizers are not DDP/AMP compliant

    Quantizers are not DDP/AMP compliant

    Hi Lucidrains,

    Thanks for the amazing work you do by implementing all those papers!

    Is there a plan to make the Quantizer be compliant with:

    • DDP - They need an all gather before calculating anything so the updates are exactly the same across all ranks
    • AMP - In my experience, if AMP touches upon the quantizers it screws up the gradient magnitudes making it NaN/Overflow

    If you want I can have a go at it.

    opened by danieltudosiu 7
  • Commitment Loss Problems

    Commitment Loss Problems

    Hello,

    First of all, thank you so much for this powerful implementation.

    I have been researching to train some VQ-VAE to generate faces from FFHQ 128x128 and I always have the same problem if I use the commitment loss (0.25) and the gamma (0.99) like in the original paper, the commitment loss seems to grow infinitely. I know you said that it is an auxiliary loss and that is not that important but is this normal behavior? If not, how can I avoid for that to happen in the case I wanted to use this loss?

    Thank you so much in advance!

    opened by pedrocg42 6
  • fix dimensions: the codebook must look at data by taking each time fr…

    fix dimensions: the codebook must look at data by taking each time fr…

    …ame individually. In SoundStream article: "This vector quantizer learns a codebook of N vectors to encode each D-dimensional frame of enc(x)."

    opened by wesbz 5
  • kmeans and ddp hangs

    kmeans and ddp hangs

    kmeans and ddp hangs for me. ddp is initialized by pytorch lightning in my case. I have several questions:

    In https://github.com/lucidrains/vector-quantize-pytorch/blob/master/vector_quantize_pytorch/vector_quantize_pytorch.py#L98

    all_num_samples = all_gather_sizes(local_samples, dim = 0) should it be dim = 1 (as dim 0 is the codebook dimension)?

    Then in https://github.com/lucidrains/vector-quantize-pytorch/blob/master/vector_quantize_pytorch/vector_quantize_pytorch.py#L93 it just hangs for me. I am not totally sure, but I believe distributed.broadcast in

    https://github.com/lucidrains/vector-quantize-pytorch/blob/master/vector_quantize_pytorch/vector_quantize_pytorch.py#L90

    is called with incompatible shapes. See https://pytorch.org/docs/stable/distributed.html#torch.distributed.broadcast

    tensor must have the same number of elements in all processes participating in the collective.

    opened by tasptz 4
  • Cannot Converge with L2 Loss

    Cannot Converge with L2 Loss

    I am trying to quantize the latent vector. To be specific, I use a Encoder to get the latent representation z of the input. Then I try to quantize z, then send z into Decoder.

    However, during my experiment, I found the reconstruction loss cannot decrease with L2 loss, namely, the EuclideanCodebook. The model can converge with cosine similarity. Have any idea about this phenomenon?

    I think cosine similarity only considers the direction of the vector, instead of the scale of the vector. I still want to use EuclideanCodebook.

    opened by kingnobro 3
  • Error when using gloo as DDP backend

    Error when using gloo as DDP backend

    Hello! Thank you for your great work on implementing VQ layer. When I use the VQ layer in DDP mode and use gloo as the backend as suggested in README, I got the following error: terminate called after throwing an instance of 'gloo::EnforceNotMet' what(): [enforce fail at ../third_party/gloo/gloo/transport/tcp/pair.cc:510] op.preamble.length <= op.nbytes. 8773632 vs 8386560

    Do you have any ideas on how to solve this problem?
    I also tried to use nccl as the backend, however the program only hangs forever...

    opened by Saltychtao 3
  • codebook initialization

    codebook initialization

    Hi, Thank you for this great work. It's quite useful!

    I have been having problems with index collapse and I'm not sure where it's coming from. But upon digging into the code, it seems that when we're not using k-means to initialize the codebook vectors, randn (normal distribution) is used to initialize them. The vqvae paper specifically uses uniform distribution for initialization, which allows the authors to ignore KL divergence when training.

    This is from the vqvae paper: "Since we assume a uniform prior for z, the KL term that usually appears in the ELBO is constant w.r.t. the encoder parameters and can thus be ignored for training."

    Is there any reason why you changed to Normal distribution here?

    Thanks!

    opened by ramyamounir 3
  • possible papers (and code) of interest

    possible papers (and code) of interest

    Have you had a look at bitsandbytes?

    https://github.com/TimDettmers/bitsandbytes

    https://arxiv.org/abs/2208.07339

    https://timdettmers.com/2022/08/17/llm-int8-and-emergent-features/

    Also this paper on tradeoffs for various 8 bit quantization formats,

    https://arxiv.org/pdf/2206.02915v1.pdf

    opened by Thomas-MMJ 2
  • RQ-VAE: How can I get a list of all learned codebook vectors (as indexed in the

    RQ-VAE: How can I get a list of all learned codebook vectors (as indexed in the "indices")?

    Hi Lucid, i am working on quantizing CLIP image embeddings with your RQ-VAE. It works pretty well.

    Next I want to take all learned codebook vectors and add them to the vocab of a GPT (as frozen token embeddings).

    The idea is to train a GPT with CLIP image embeddings in between texts, e.g. IMAGE-CAPTION or TEXT-IMAGE-TEXT-IMAGE- ... Flamingo-style).

    If this works, then GPT could maybe also learn to generate quantized CLIP IM embeddings token by token --> and then e.g. show images through a.) retrieval or b.) a DALLE 2 decoder :)

    ... So my question is: Once the RQ-VAE is trained and i can get the quantized reconstructions and indices - How can I get a list or tensor of the actual codebook? (all possible vectors from the rq-vocab) :)

    opened by christophschuhmann 2
  • Expire codes heuristic is replacing inputs

    Expire codes heuristic is replacing inputs

    Thanks for the implementation!

    One question, should this

    https://github.com/lucidrains/vector-quantize-pytorch/blob/ebce893fff695845f7fe0f04d1400d2c29b94f98/vector_quantize_pytorch/vector_quantize_pytorch.py#L177

    be actually self.expire_codes_(quantize)?

    opened by kashif 2
  • orthogonal regularization loss useless?

    orthogonal regularization loss useless?

    because the codebooks are not registered as trainable parameters, and the orthogonal loss is only a function of the codebooks, is the orthogonal loss entirely useless?

    opened by GallagherCommaJack 2
  • EMA update on CosineCodebook

    EMA update on CosineCodebook

    The original VIT-VQGAN paper does not seem to use EMA update for codebook learning since their codebook is unit-normalized vectors.

    Particularly, to my understanding, EMA update does not quite make sense when the encoder outputs and codebook vectors are unit-normalized ones.

    What's your take on this? Should we NOT use EMA update with CosineCodebook?

    opened by le4m 3
  • Loss and Backprop Details

    Loss and Backprop Details

    Hi,

    During training the vqvae backprops on multiple losses. While inputting feature maps to the model, we are given a loss, shoud I manually backpropagate and update weights through (the good ol' loss.backward() and optimizer.step()) this or is it handled implicitly?

    opened by Malik7115 3
  • Missing parameter of beta

    Missing parameter of beta

    Hi, in the original VQVAE paper, the commit_loss is defined as

    (quantize.detach()-x) ** 2 + beta * (quantize - x.detach() ** 2)
    

    where the beta is usually to be 0.25. But the commit_loss is defined as the following in your implementation:

    F.mse_loss(quantize.detach(), x)
    

    So I wonder if the parameter beta is set to be 1 by default or if the second term is missing? Thank you very much.

    opened by Corleone-Huang 1
  • No way of training the codebook

    No way of training the codebook

    Hi! Could you please explain how the codebook vectors are updated if the codebook vectors are not required to be orthogonal?

    1. embed tensors in both Euclidean and CosineSim codebooks are registered as buffers, so they can't be updated at all
    2. There is no loss on the codebook vectors that moves them closer to the input

    Am I missing something? It seems that right now there is no way of updating the codebook vectors without the orthogonal loss.

    opened by RafailFridman 5
  • Plugging vector-quantize-pytorch into taming-transformers

    Plugging vector-quantize-pytorch into taming-transformers

    Hi,

    I noticed your architecture could be plugged within the pipeline from https://github.com/CompVis/taming-transformers. I have proposed a code here (https://github.com/tanouch/taming-transformers) doing that. It enables to properly compare the different features proposed in your repo (Lower codebook dimension, Cosine similarity, Orthogonal regularization loss, etc) with the original formulation.

    The code from this repo can be seen in both files

    • taming-transformers/taming/models/vqgan.py
    • taming-transformers/taming/modules/vqvae/quantize.py

    As you can see, it is easy to launch a large scale training with your proposed architecture.

    I am not sure this issue belongs here or in the taming-transformers repo. However, I thought you might be interested. Thanks again for your work and these open-sourced repositeries !

    opened by tanouch 2
Releases(0.10.14)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022