Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

Overview

BI-RADS BERT

Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

This implementation could be used on other radiology in house corpus as well. Labelling your own data should take the same form as reports and dataframes in './mockdata'.

Conda Environment setup

This project was developed using conda environments. To build the conda environment use the line of code below from the command line

conda create --name NLPenv --file requirements.txt --channel default --channel conda-forge --channel huggingface --channel pytorch

Dataset Organization

Two datasets are needed to build BERT embeddings and fine tuned Field Extractors. 1. dataframe of SQL data, 2. labeled data for field extraction.

Dataframe of SQL data: example file './mock_data/sql_dataframe.csv'. This file was efficiently made by producing a spreadsheet of all entries in the sql table and saving them as a csv file. It will require that each line of the report be split and coordinated with a SequenceNumber column to combine all the reports. Then continue to the 'How to Run BERT Pretraining' Section.

Labeled data for Field Extraction: example of files in './mock_data/labaled_data'. Exach txt file is a save dict object with fields:

example = {
    'original_report': original text report unprocessed from the exam_dataframe.csv, 
    'sectionized': dict example of the report in sections, ex. {'Title': '...', 'Hx': '...', ...}
    'PID': patient identification number,
    'date': date of the exam,
    'field_name1': name of a field you wish to classify, vlaue is the label, 
    'field_name2': more labeled fields are an option, 
    ...
}

How to Run BERT Pretraining

Step 1: SQLtoDataFrame.py

This script can be ran to convert SQL data from a hospital records system to a dataframe for all exams. Hospital records keep each individual report line as a separate SQL entry, so by using 'SequenceNumber' we can assemble them in order.

python ./examples/SQLtoDataFrame.py 
--input_sql ./mock_data/sql_dataframe.csv 
--save_name /folder/to/save/exam_dataframe/save_file.csv

This will output an 'exam_dataframe.csv' file that can be used in the next step.

Step 2: TextPreProcessingBERTModel.py

This script is ran to convert the exam_dataframe.csv file into a pre_training text file for training and validation, with a vocabulary size. An example of the output can be found in './mock_data/pre_training_data'.

python ./examples/TextPreProcessingBERTModel.py 
--dfolder /folder/that/contains/exam_dataframe 
--ft_folder ./mock_data/labeled_data

Step 3: MLM_Training_transformers.py

This script will now run the BERT pre training with masked language modeling. The Output directory (--output_dir) used is required to be empty; eitherwise the parser parameter --overwrite_output_dir is required to overwrite the files in the output directory.

python ./examples/MLM_Training_transformers.py 
--train_data_file ./mock_data/pre_training_data/VocabOf39_PreTraining_training.txt 
--output_dir /folder/to/save/bert/model
--do_eval 
--eval_data_file ./mock_data/pre_training_data/PreTraining_validation.txt 

How to Run BERT Fine Tuning

--pre_trained_model parsed arugment that can be used for all the follwing scripts to load a pre trained embedding. The default is bert-base-uncased. To get BioClinical BERT use --pre_trained_model emilyalsentzer/Bio_ClinicalBERT.

Step 4: BERTFineTuningSectionTokenization.py

This script will run fine tuning to train a section tokenizer with the option of using auxiliary data.

python ./examples/BERTFineTuningSectionTokenization.py 
--dfolder ./mock_data/labeled_data
--sfolder /folder/to/save/section_tokenizer

Optional parser arguements:

--aux_data If used then the Section Tokenizer will be trained with the auxilliary data.

--k_fold If used then the experiment is run with a 5 fold cross validation.

Step 5: BERTFineTuningFieldExtractionWoutSectionization.py

This script will run fine tuning training of field extraction without section tokenization.

python ./examples/BERTFineTuningFieldExtractionWoutSectionization.py 
--dfolder ./mock_data/labeled_data
--sfolder /folder/to/save/field_extractor_WoutST
--field_name Modality

field_name is a required parsed arguement.

Optional parser arguements:

--k_fold If used then the experiment is run with a 5 fold cross validation.

Step 6: BERTFineTuningFieldExtraction.py

This script will run fine tuning training of field extraction with section tokenization.

python ./examples/BERTFineTuningFieldExtraction.py 
--dfolder ./mock_data/labeled_data
--sfolder /folder/to/save/field_extractor
--field_name Modality
--report_section Title

field_name and report_section is a required parsed arguement.

Optional parser arguements:

--k_fold If used then the experiment is run with a 5 fold cross validation.

Additional Codes

post_ExperimentSummary.py

This code can be used to run statistical analysis of test results that are produced from BERTFineTuning codes.

To determine the best final model, we performed statistical significance testing with a 95% confidence. We used the Mann-Whitney U test to compare the medians of different section tokenizers as the distribution of accuracy and G.F1 performance is skewed to the left (medians closer to 100%). For the field extraction classifiers, we used the McNemar test to compare the agreement between two classifiers. The McNemar test was chosen because it has been robustly proven to have an acceptable probability of Type I errors (not detecting a difference between two classifiers when there is a difference). After evaluating both configurations of field extraction explored in this paper, we performed another McNemar test to assist in choosing the best technique. All statistical tests were performed with p-value adjustments for multiple comparisons testing with Bonferonni correction.

Note: input folder must contain 2 or more .xlsx files of experiemtnal results to perform a statistical test.

python ./examples/post_ExperimentSummary.py --folder /folder/where/xlsx/files/are/located --stat_test MannWhitney

--stat_test options: 'MannWhitney' and 'McNemar'.

'MannWhitney': MannWhitney U-Test. This test was used for the Section Tokenizer experimental results comparing the results from different models. https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test

'McNemar' : McNemar's test. This test was used for the Field Extraction experimental results comparing the results from different models. https://en.wikipedia.org/wiki/McNemar%27s_test

Contact

Please post a Github issue if you have any questions.

Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022
Apache Flink

Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flin

The Apache Software Foundation 20.4k Dec 30, 2022
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
An open source implementation of CLIP.

OpenCLIP Welcome to an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training). The goal of this repository is to enable

2.7k Dec 31, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

rsteca 709 Jan 03, 2023
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022