Pytorch Implementation for Dilated Continuous Random Field

Overview

DilatedCRF

Pytorch implementation for fully-learnable DilatedCRF.


If you find my work helpful, please consider our paper:

@article{Mo2022dilatedcrf,
    title={Dilated Continuous Random Field for Semantic Segmentation},  
    author={Xi Mo, Xiangyu Chen, Cuncong Zhong, Rui Li, Kaidong Li, Sajid Usman},
    booktitle={IEEE International Conference on Robotics and Automation}, 
    year={2022}  
}

Easy Setup

Please install these required packages by official guidance:

python >= 3.6
pytorch >= 1.0.0
torchvision
pillow
numpy

How to Use

1. Prepare dataset

  • Dowload suction-based-grasping-dataset.zip (1.6GB) [link]. Please cite relevant paper:
@article{zeng2018robotic, 
    title={Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching},  
    author={Zeng, Andy and Song, Shuran and Yu, Kuan-Ting and Donlon, Elliott and Hogan, Francois Robert and Bauza, Maria and Ma, Daolin and Taylor, Orion and Liu,     Melody and Romo, Eudald and Fazeli, Nima and Alet, Ferran and Dafle, Nikhil Chavan and Holladay, Rachel and Morona, Isabella and Nair, Prem Qu and Green, Druck and Taylor, Ian and Liu, Weber and Funkhouser, Thomas and Rodriguez, Alberto},  
    booktitle={Proceedings of the IEEE International Conference on Robotics and Automation}, 
    year={2018}  
}
  • Train your own semantic segmentation classifers on the suction dataset, generate training samples and test samples for DilatedCRF. You can also download my training set and test set (872MB) [link], extract the default folder dataset to the main directory.
    NOTE: Customized training and test samples must be organized the same as the default dataset format.

2. Train network

  • If you want to customize training process, modify utils/configuration.py parameters according to its instructions.

  • Train DilatedCRF use default dataset folder, or customized dataset path by -d argument.
    NOTE: checkpoints will be written to the default folder checkpoint.

    python DialatedCRF.py -train
    

    or restore training using the lattest .pt file stored in default folder checkpoint:

    python DialatedCRF.py -train -r
    

    or you may want to use specified checkpoint:

    python DialatedCRF.py -train -r -c path/to/your/ckpt
    

    Note that checkpoint file must match the parameter "SCALE" specified in utils/configuration.py. To specify customized dataset folder, use:

    python RGANet.py -train -d your/dataset/path
    

3. Validation

  • Complete dataset folder mentioned above and a valid checkpoint are required. You can download my checkpoint for "SCALE" = 0.25 (42.4MB) [link], be sure to adjust corresponding configurations beforehand. Then run:

    python DialatedCRF.py -v
    

    or you may specify dataset folder by -d:

    python DialatedCRF.py -v -d your/path/to/dataset/folder
    
  • Final results will be written to folder results. Metrics including Jaccard, F1-score, accuracy, etc., will be gathered as evaluation.txt in the folder results/evaluation


Contributed by Xi Mo,
License: Apache 2.0

Owner
DunnoCoding_Plus
CODE HARD, LIVE HAPPY.
DunnoCoding_Plus
OpenMMLab Image and Video Editing Toolbox

Introduction MMEditing is an open source image and video editing toolbox based on PyTorch. It is a part of the OpenMMLab project. The master branch wo

OpenMMLab 3.9k Jan 04, 2023
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Apache Flink

Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flin

The Apache Software Foundation 20.4k Dec 30, 2022
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022