Pytorch Implementation for Dilated Continuous Random Field

Overview

DilatedCRF

Pytorch implementation for fully-learnable DilatedCRF.


If you find my work helpful, please consider our paper:

@article{Mo2022dilatedcrf,
    title={Dilated Continuous Random Field for Semantic Segmentation},  
    author={Xi Mo, Xiangyu Chen, Cuncong Zhong, Rui Li, Kaidong Li, Sajid Usman},
    booktitle={IEEE International Conference on Robotics and Automation}, 
    year={2022}  
}

Easy Setup

Please install these required packages by official guidance:

python >= 3.6
pytorch >= 1.0.0
torchvision
pillow
numpy

How to Use

1. Prepare dataset

  • Dowload suction-based-grasping-dataset.zip (1.6GB) [link]. Please cite relevant paper:
@article{zeng2018robotic, 
    title={Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching},  
    author={Zeng, Andy and Song, Shuran and Yu, Kuan-Ting and Donlon, Elliott and Hogan, Francois Robert and Bauza, Maria and Ma, Daolin and Taylor, Orion and Liu,     Melody and Romo, Eudald and Fazeli, Nima and Alet, Ferran and Dafle, Nikhil Chavan and Holladay, Rachel and Morona, Isabella and Nair, Prem Qu and Green, Druck and Taylor, Ian and Liu, Weber and Funkhouser, Thomas and Rodriguez, Alberto},  
    booktitle={Proceedings of the IEEE International Conference on Robotics and Automation}, 
    year={2018}  
}
  • Train your own semantic segmentation classifers on the suction dataset, generate training samples and test samples for DilatedCRF. You can also download my training set and test set (872MB) [link], extract the default folder dataset to the main directory.
    NOTE: Customized training and test samples must be organized the same as the default dataset format.

2. Train network

  • If you want to customize training process, modify utils/configuration.py parameters according to its instructions.

  • Train DilatedCRF use default dataset folder, or customized dataset path by -d argument.
    NOTE: checkpoints will be written to the default folder checkpoint.

    python DialatedCRF.py -train
    

    or restore training using the lattest .pt file stored in default folder checkpoint:

    python DialatedCRF.py -train -r
    

    or you may want to use specified checkpoint:

    python DialatedCRF.py -train -r -c path/to/your/ckpt
    

    Note that checkpoint file must match the parameter "SCALE" specified in utils/configuration.py. To specify customized dataset folder, use:

    python RGANet.py -train -d your/dataset/path
    

3. Validation

  • Complete dataset folder mentioned above and a valid checkpoint are required. You can download my checkpoint for "SCALE" = 0.25 (42.4MB) [link], be sure to adjust corresponding configurations beforehand. Then run:

    python DialatedCRF.py -v
    

    or you may specify dataset folder by -d:

    python DialatedCRF.py -v -d your/path/to/dataset/folder
    
  • Final results will be written to folder results. Metrics including Jaccard, F1-score, accuracy, etc., will be gathered as evaluation.txt in the folder results/evaluation


Contributed by Xi Mo,
License: Apache 2.0

Owner
DunnoCoding_Plus
CODE HARD, LIVE HAPPY.
DunnoCoding_Plus
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+

FengZhang 34 Dec 04, 2022
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022