Pytorch Implementation for Dilated Continuous Random Field

Overview

DilatedCRF

Pytorch implementation for fully-learnable DilatedCRF.


If you find my work helpful, please consider our paper:

@article{Mo2022dilatedcrf,
    title={Dilated Continuous Random Field for Semantic Segmentation},  
    author={Xi Mo, Xiangyu Chen, Cuncong Zhong, Rui Li, Kaidong Li, Sajid Usman},
    booktitle={IEEE International Conference on Robotics and Automation}, 
    year={2022}  
}

Easy Setup

Please install these required packages by official guidance:

python >= 3.6
pytorch >= 1.0.0
torchvision
pillow
numpy

How to Use

1. Prepare dataset

  • Dowload suction-based-grasping-dataset.zip (1.6GB) [link]. Please cite relevant paper:
@article{zeng2018robotic, 
    title={Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching},  
    author={Zeng, Andy and Song, Shuran and Yu, Kuan-Ting and Donlon, Elliott and Hogan, Francois Robert and Bauza, Maria and Ma, Daolin and Taylor, Orion and Liu,     Melody and Romo, Eudald and Fazeli, Nima and Alet, Ferran and Dafle, Nikhil Chavan and Holladay, Rachel and Morona, Isabella and Nair, Prem Qu and Green, Druck and Taylor, Ian and Liu, Weber and Funkhouser, Thomas and Rodriguez, Alberto},  
    booktitle={Proceedings of the IEEE International Conference on Robotics and Automation}, 
    year={2018}  
}
  • Train your own semantic segmentation classifers on the suction dataset, generate training samples and test samples for DilatedCRF. You can also download my training set and test set (872MB) [link], extract the default folder dataset to the main directory.
    NOTE: Customized training and test samples must be organized the same as the default dataset format.

2. Train network

  • If you want to customize training process, modify utils/configuration.py parameters according to its instructions.

  • Train DilatedCRF use default dataset folder, or customized dataset path by -d argument.
    NOTE: checkpoints will be written to the default folder checkpoint.

    python DialatedCRF.py -train
    

    or restore training using the lattest .pt file stored in default folder checkpoint:

    python DialatedCRF.py -train -r
    

    or you may want to use specified checkpoint:

    python DialatedCRF.py -train -r -c path/to/your/ckpt
    

    Note that checkpoint file must match the parameter "SCALE" specified in utils/configuration.py. To specify customized dataset folder, use:

    python RGANet.py -train -d your/dataset/path
    

3. Validation

  • Complete dataset folder mentioned above and a valid checkpoint are required. You can download my checkpoint for "SCALE" = 0.25 (42.4MB) [link], be sure to adjust corresponding configurations beforehand. Then run:

    python DialatedCRF.py -v
    

    or you may specify dataset folder by -d:

    python DialatedCRF.py -v -d your/path/to/dataset/folder
    
  • Final results will be written to folder results. Metrics including Jaccard, F1-score, accuracy, etc., will be gathered as evaluation.txt in the folder results/evaluation


Contributed by Xi Mo,
License: Apache 2.0

Owner
DunnoCoding_Plus
CODE HARD, LIVE HAPPY.
DunnoCoding_Plus
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
Simple Dynamic Batching Inference

Simple Dynamic Batching Inference 解决了什么问题? 众所周知,Batch对于GPU上深度学习模型的运行效率影响很大。。。 是在Inference时。搜索、推荐等场景自带比较大的batch,问题不大。但更多场景面临的往往是稀碎的请求(比如图片服务里一次一张图)。 如果

116 Jan 01, 2023
Semi-automated OpenVINO benchmark_app with variable parameters

Semi-automated OpenVINO benchmark_app with variable parameters. User can specify multiple options for any parameters in the benchmark_app and the progam runs the benchmark with all combinations of gi

Yasunori Shimura 8 Apr 11, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023