Pytorch Implementation for Dilated Continuous Random Field

Overview

DilatedCRF

Pytorch implementation for fully-learnable DilatedCRF.


If you find my work helpful, please consider our paper:

@article{Mo2022dilatedcrf,
    title={Dilated Continuous Random Field for Semantic Segmentation},  
    author={Xi Mo, Xiangyu Chen, Cuncong Zhong, Rui Li, Kaidong Li, Sajid Usman},
    booktitle={IEEE International Conference on Robotics and Automation}, 
    year={2022}  
}

Easy Setup

Please install these required packages by official guidance:

python >= 3.6
pytorch >= 1.0.0
torchvision
pillow
numpy

How to Use

1. Prepare dataset

  • Dowload suction-based-grasping-dataset.zip (1.6GB) [link]. Please cite relevant paper:
@article{zeng2018robotic, 
    title={Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image Matching},  
    author={Zeng, Andy and Song, Shuran and Yu, Kuan-Ting and Donlon, Elliott and Hogan, Francois Robert and Bauza, Maria and Ma, Daolin and Taylor, Orion and Liu,     Melody and Romo, Eudald and Fazeli, Nima and Alet, Ferran and Dafle, Nikhil Chavan and Holladay, Rachel and Morona, Isabella and Nair, Prem Qu and Green, Druck and Taylor, Ian and Liu, Weber and Funkhouser, Thomas and Rodriguez, Alberto},  
    booktitle={Proceedings of the IEEE International Conference on Robotics and Automation}, 
    year={2018}  
}
  • Train your own semantic segmentation classifers on the suction dataset, generate training samples and test samples for DilatedCRF. You can also download my training set and test set (872MB) [link], extract the default folder dataset to the main directory.
    NOTE: Customized training and test samples must be organized the same as the default dataset format.

2. Train network

  • If you want to customize training process, modify utils/configuration.py parameters according to its instructions.

  • Train DilatedCRF use default dataset folder, or customized dataset path by -d argument.
    NOTE: checkpoints will be written to the default folder checkpoint.

    python DialatedCRF.py -train
    

    or restore training using the lattest .pt file stored in default folder checkpoint:

    python DialatedCRF.py -train -r
    

    or you may want to use specified checkpoint:

    python DialatedCRF.py -train -r -c path/to/your/ckpt
    

    Note that checkpoint file must match the parameter "SCALE" specified in utils/configuration.py. To specify customized dataset folder, use:

    python RGANet.py -train -d your/dataset/path
    

3. Validation

  • Complete dataset folder mentioned above and a valid checkpoint are required. You can download my checkpoint for "SCALE" = 0.25 (42.4MB) [link], be sure to adjust corresponding configurations beforehand. Then run:

    python DialatedCRF.py -v
    

    or you may specify dataset folder by -d:

    python DialatedCRF.py -v -d your/path/to/dataset/folder
    
  • Final results will be written to folder results. Metrics including Jaccard, F1-score, accuracy, etc., will be gathered as evaluation.txt in the folder results/evaluation


Contributed by Xi Mo,
License: Apache 2.0

Owner
DunnoCoding_Plus
CODE HARD, LIVE HAPPY.
DunnoCoding_Plus
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
👨‍💻 run nanosaur in simulation with Gazebo/Ingnition

🦕 👨‍💻 nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022