Bayesian Neural Networks in PyTorch

Overview

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of samples. Our method is described in the paper (UAI2021): "Graph Reparameterizations for Enabling 1000+ Monte Carlo Iterations in Bayesian Deep Neural Networks".

In addition, we provide an implementation framework to make your deterministic network Bayesian in PyTorch.

If you like our work, please click on a star. If you use our code in your research projects, please cite our paper above.

Bayesify your Neural Network

There are 3 main files which help you to Bayesify your deterministic network:

  1. bayes_layers.py - file contains a bayesian implementation of convolution(1d, 2d, 3d, transpose) and linear layers, according to approx posterior from Location-Scale family, i.e. which has 2 parameters mu and sigma. This file contains general definition, independent of specific distribution, as long as distribution contains 2 parameters mu and sigma. It uses forward method defined in vi_posteriors.py file. One of the main arguments for redefined classes is approx_post, which defined which posterior class to use from vi_posteriors.py. Please, specify this name same way as defined class in vi_posteriors.py. For example, if vi_posteriors.py contains class Gaus, then approx_post='Gaus'.

  2. vi_posteriors.py - file describes forward method, including kl term, for different approximate posterior distributions. Current implementation contains following disutributions:

  • Radial
  • Gaus

If you would like to implement your own class of distrubtions, in vi_posteriors.py copy one of defined classes and redefine following functions: forward(obj, x, fun=""), get_kl(obj, n_mc_iter, device).

It also contains usefull Utils class which provides

  • definition of loss functions:
    • get_loss_categorical
    • get_loss_normal,
  • different beta coefficients: get_beta for KL term and
  • allows to turn on/off computing the KL term, with function set_compute_kl. this is useful, when you perform testing/evaluation, and kl term is not required to be computed. In that case it accelerates computations.

Below is an example to bayesify your own network. Note the forward method, which handles situations if a layer is not of a Bayesian type, and thus, does not return kl term, e.g. ReLU(x).

import bayes_layers as bl # important for defining bayesian layers
class YourBayesNet(nn.Module):
    def __init__(self, num_classes, in_channels, 
                 **bayes_args):
        super(YourBayesNet, self).__init__()
        self.conv1 = bl.Conv2d(in_channels, 64,
                               kernel_size=11, stride=4,
                               padding=5,
                               **bayes_args)
        self.classifier = bl.Linear(1*1*128,
                                    num_classes,
                                    **bayes_args)
        self.layers = [self.conv1, nn.ReLU(), self.classifier]
        
    def forward(self, x):
        kl = 0
        for layer in self.layers:
            tmp = layer(x)
            if isinstance(tmp, tuple):
                x, kl_ = tmp
                kl += kl_
            else:
                x = tmp

        x = x.view(x.size(0), -1)
        logits, _kl = self.classifier.forward(x)
        kl += _kl
        
        return logits, kl

Then later in the main file during training, you can either use one of the loss functions, defined in utils as following:

output, kl = model(inputs)
kl = kl.mean()  # if several gpus are used to split minibatch

loss, _ = vi.Utils.get_loss_categorical(kl, output, targets, beta=beta) 
#loss, _ = vi.Utils.get_loss_normal(kl, output, targets, beta=beta) 
loss.backward()

or design your own, e.g.

loss = kl_coef*kl - loglikelihood
loss.backward()
  1. uncertainty_estimate.py - file describes set of functions to perform uncertainty estimation, e.g.
  • get_prediction_class - function which return the most common class in iterations
  • summary_class - function creates a summary file with statistics

Current implementation of networks for different problems

Classification

Script bayesian_dnn_class/main.py is the main executable code and all standard DNN models are located in bayesian_dnn_class/models, and are:

  • AlexNet
  • Fully Connected
  • DenseNet
  • ResNet
  • VGG
Owner
Jurijs Nazarovs
PhD student in statistics at the UW-Madison.
Jurijs Nazarovs
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
Code for MarioNette: Self-Supervised Sprite Learning, in NeurIPS 2021

MarioNette | Webpage | Paper | Video MarioNette: Self-Supervised Sprite Learning Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Ale

Dima Smirnov 28 Nov 18, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022